J. Murota, M. Sakuraba, T. Watanabe, T. Matsuura, Y. Sawada
{"title":"Atomic layer-by-layer epitaxy of silicon and germanium using flash heating in CVD","authors":"J. Murota, M. Sakuraba, T. Watanabe, T. Matsuura, Y. Sawada","doi":"10.1051/JPHYSCOL:19955130","DOIUrl":null,"url":null,"abstract":"Atomic layer-by-layer epitaxy control of Si and Ge in flash-heating CVD using SiH 4 and GeH 4 gases was investigated. Self-limiting SiH 4 reaction on the Ge surface results in Si atomic-layer formation at substrate temperatures below 300 °C even without the flash heating. In the case of Ge growth, by increasing the flash light intensity and the GeH 4 partial pressure, Ge atomic-layer growth on the wet-cleaned Si(100) was achieved with a single flash shot at 275°C. Using these growth controls, resonant tunneling diodes of Ge/Si,Ge 1 (50A)/Ge(50A) / Si 1 Ge 1 (50A)/Ge, in which the Si 1 Ge 1 layers were formed by alternately depositing single atomic-layers of Si and Ge, were fabricated, and clear negative resistance in the current-voltage characteristic was observed at 10 K. The current peaks were expected to be assigned to a hole resonant tunneling via light-hole bound state in the Ge quantum well. This fact suggests that the diode structure has abrupt Si 1 Ge 1 /Ge interfaces by employing a low-temperature atomic layer-by-layer growth process below 300°C.","PeriodicalId":17944,"journal":{"name":"Le Journal De Physique Colloques","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Le Journal De Physique Colloques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSCOL:19955130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Atomic layer-by-layer epitaxy control of Si and Ge in flash-heating CVD using SiH 4 and GeH 4 gases was investigated. Self-limiting SiH 4 reaction on the Ge surface results in Si atomic-layer formation at substrate temperatures below 300 °C even without the flash heating. In the case of Ge growth, by increasing the flash light intensity and the GeH 4 partial pressure, Ge atomic-layer growth on the wet-cleaned Si(100) was achieved with a single flash shot at 275°C. Using these growth controls, resonant tunneling diodes of Ge/Si,Ge 1 (50A)/Ge(50A) / Si 1 Ge 1 (50A)/Ge, in which the Si 1 Ge 1 layers were formed by alternately depositing single atomic-layers of Si and Ge, were fabricated, and clear negative resistance in the current-voltage characteristic was observed at 10 K. The current peaks were expected to be assigned to a hole resonant tunneling via light-hole bound state in the Ge quantum well. This fact suggests that the diode structure has abrupt Si 1 Ge 1 /Ge interfaces by employing a low-temperature atomic layer-by-layer growth process below 300°C.
研究了sih4和geh4气体在闪速加热CVD中对Si和Ge的原子逐层外延控制。当衬底温度低于300°C时,即使没有闪蒸加热,Ge表面的sih4自限制反应也能形成硅原子层。在锗生长的情况下,通过增加闪光光强度和geh4分压,在275°C的单次闪光下,在湿清洗的Si(100)上实现了锗原子层的生长。利用这些生长控制,制备了Ge/Si、Ge 1 (50A)/Ge(50A) /Si 1 Ge 1 (50A)/ Si 1 Ge 1 (50A)/Ge 1 Ge 1 (50A)/Ge的谐振隧道二极管,其中Si 1 Ge 1层由Si和Ge的单原子层交替沉积而成,在10 K时观察到明显的电流-电压特性负电阻。在Ge量子阱中,通过光孔束缚态产生的空穴共振隧穿峰被认为是电流峰值。这一事实表明,采用低于300°C的低温原子逐层生长工艺,二极管结构具有突变的Si 1 Ge 1 /Ge界面。