A glassy carbon electrode modified with polyaniline nanowires: An electrochemically effective surface area and an electrocatalytic activity for the oxidation of methanol under alkaline conditions

L. T. Tran, H. V. Tran, H. Cao, Anh Van Nguyen, C. D. Huynh
{"title":"A glassy carbon electrode modified with polyaniline nanowires: An electrochemically effective surface area and an electrocatalytic activity for the oxidation of methanol under alkaline conditions","authors":"L. T. Tran, H. V. Tran, H. Cao, Anh Van Nguyen, C. D. Huynh","doi":"10.1177/17475198221123414","DOIUrl":null,"url":null,"abstract":"Polyaniline nanowires are directly synthesized on a glassy carbon electrode (3 mm diameter) by an electrochemical process. The polyaniline nanowires, of uniform size, a diameter of 85–95 nm, and high conductivity, distribute evenly throughout the surface of the working electrode. Electrochemical measurements are conducted in order to determine the electrochemically effective surface area of the obtained glassy carbon electrode modified with polyaniline nanowires, and an investigation of the electrocatalytic activity of polyaniline nanowires for the oxidation of methanol under alkaline conditions is carried out. The electrochemically effective surface area of the glassy carbon electrode modified with polyaniline nanowires is nearly 27 times larger than that of a glassy carbon electrode. In a cyclic voltammetry curve of the glassy carbon electrode modified with polyaniline nanowires measured in a 3.0 M CH3OH and 0.5 M KOH solution, an anodic peak corresponding to the oxidation of methanol under alkaline conditions appears at 0.17 V with a peak current of 34.4 μA.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221123414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Polyaniline nanowires are directly synthesized on a glassy carbon electrode (3 mm diameter) by an electrochemical process. The polyaniline nanowires, of uniform size, a diameter of 85–95 nm, and high conductivity, distribute evenly throughout the surface of the working electrode. Electrochemical measurements are conducted in order to determine the electrochemically effective surface area of the obtained glassy carbon electrode modified with polyaniline nanowires, and an investigation of the electrocatalytic activity of polyaniline nanowires for the oxidation of methanol under alkaline conditions is carried out. The electrochemically effective surface area of the glassy carbon electrode modified with polyaniline nanowires is nearly 27 times larger than that of a glassy carbon electrode. In a cyclic voltammetry curve of the glassy carbon electrode modified with polyaniline nanowires measured in a 3.0 M CH3OH and 0.5 M KOH solution, an anodic peak corresponding to the oxidation of methanol under alkaline conditions appears at 0.17 V with a peak current of 34.4 μA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚苯胺纳米线修饰的玻碳电极:在碱性条件下甲醇氧化的电化学有效表面积和电催化活性
采用电化学方法在直径为3mm的玻碳电极上直接合成了聚苯胺纳米线。所制备的聚苯胺纳米线尺寸均匀,直径为85 ~ 95 nm,导电率高,均匀分布在工作电极表面。通过电化学测量,确定了聚苯胺纳米线修饰的玻碳电极的电化学有效表面积,并研究了聚苯胺纳米线在碱性条件下对甲醇氧化的电催化活性。用聚苯胺纳米线修饰的玻碳电极的电化学有效表面积是普通玻碳电极的近27倍。在3.0 M CH3OH和0.5 M KOH溶液中测得的聚苯胺纳米线修饰的玻碳电极的循环伏安曲线中,在0.17 V处出现了一个与甲醇在碱性条件下氧化相对应的阳极峰,峰值电流为34.4 μA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
期刊最新文献
Preparation of ZrO2/Na-β and ZrO2/H-β catalysts and their catalytic performance for the Meerwein–Ponndorf–Verley reaction of cyclohexanone and isopropanol Spectroscopic and DFT study of tris(β-diketonato)cobalt(III) complexes One-pot, simple, and facile synthesis of 4-(3-benzylbenzo[d]thiazol-2(3H)-ylidene)-cyclohexa-2,5-dien-1-one derivatives via a novel three-component reaction An effective calix[4]arene-based adsorbent for tetracycline removal from water systems: Kinetic, isotherm, and thermodynamic studies A thermoregulated phase-transfer ruthenium nanocatalyst for the atmospheric hydrogenation of α,β-unsaturated ketones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1