Lorenza Destro, Ross Van Melsen, A. Gobbi, Andrea Terzi, Matteo Genitoni, A. Zambon
{"title":"Expedient Access to Type II Kinase Inhibitor Chemotypes by Microwave-Assisted Suzuki Coupling","authors":"Lorenza Destro, Ross Van Melsen, A. Gobbi, Andrea Terzi, Matteo Genitoni, A. Zambon","doi":"10.3390/applbiosci1010004","DOIUrl":null,"url":null,"abstract":"Functionalized pyrazole-urea scaffolds are a common type II chemotype for the inhibition of protein kinases (PKs), binding simultaneously into the ATP-binding pocket with an ATP bioisostere and into a vicinal allosteric pocket with a pyrazole group. Standard approaches to the scaffold require multi-step synthesis of the ATP bioisostere followed by phosgene or triphosgene-mediated coupling with the substituted pyrazole group. Here we report an expedient approach to the chemotype, characterized by an optimized MW-assisted Suzuki coupling on easily accessed bromo-phenyl pyrazole ureas. The new protocol allowed quick access a large library of target analogues covering a broad chemical space of putative protein kinases inhibitors (PKIs).","PeriodicalId":14998,"journal":{"name":"Journal of Applied Biosciences","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applbiosci1010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Functionalized pyrazole-urea scaffolds are a common type II chemotype for the inhibition of protein kinases (PKs), binding simultaneously into the ATP-binding pocket with an ATP bioisostere and into a vicinal allosteric pocket with a pyrazole group. Standard approaches to the scaffold require multi-step synthesis of the ATP bioisostere followed by phosgene or triphosgene-mediated coupling with the substituted pyrazole group. Here we report an expedient approach to the chemotype, characterized by an optimized MW-assisted Suzuki coupling on easily accessed bromo-phenyl pyrazole ureas. The new protocol allowed quick access a large library of target analogues covering a broad chemical space of putative protein kinases inhibitors (PKIs).