Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend.

In vitro models Pub Date : 2023-04-13 eCollection Date: 2023-11-01 DOI:10.1007/s44164-023-00049-w
G Radha, N Manjubaashini, S Balakumar
{"title":"Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend.","authors":"G Radha, N Manjubaashini, S Balakumar","doi":"10.1007/s44164-023-00049-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions. The brittle nature of synthetic nHAp leads to weak mechanical properties, which eventually confines the utility of nHAp in load-bearing applications. Hence, this review focuses on the recent trends in the fabrication and investigation of nHAp-based polymer nanocomposite scaffolds for bone regeneration. Employing different polymers and fabrication strategies would efficiently tailor the physicochemical properties, and tailor-made mechanical properties in competence with biodegradation, thereby enhancing their potential in biomedical utility, and exploring their efficacy under in vitro and in vivo conditions to make \"HAp-based smart-biomaterials\" for bone tissue engineering.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"2014 1","pages":"125-151"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-023-00049-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions. The brittle nature of synthetic nHAp leads to weak mechanical properties, which eventually confines the utility of nHAp in load-bearing applications. Hence, this review focuses on the recent trends in the fabrication and investigation of nHAp-based polymer nanocomposite scaffolds for bone regeneration. Employing different polymers and fabrication strategies would efficiently tailor the physicochemical properties, and tailor-made mechanical properties in competence with biodegradation, thereby enhancing their potential in biomedical utility, and exploring their efficacy under in vitro and in vivo conditions to make "HAp-based smart-biomaterials" for bone tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米羟基磷灰石/天然高分子复合材料骨组织工程支架研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1