\(\boldsymbol{\mathcal{L}_2}\)-Optimal Reduced-Order Modeling Using Parameter-Separable Forms

Petar Mlinaric, S. Gugercin
{"title":"\\(\\boldsymbol{\\mathcal{L}_2}\\)-Optimal Reduced-Order Modeling Using Parameter-Separable Forms","authors":"Petar Mlinaric, S. Gugercin","doi":"10.1137/22m1500678","DOIUrl":null,"url":null,"abstract":"We provide a unifying framework for $\\mathcal{L}_2$-optimal reduced-order modeling for linear time-invariant dynamical systems and stationary parametric problems. Using parameter-separable forms of the reduced-model quantities, we derive the gradients of the $\\mathcal{L}_2$ cost function with respect to the reduced matrices, which then allows a non-intrusive, data-driven, gradient-based descent algorithm to construct the optimal approximant using only output samples. By choosing an appropriate measure, the framework covers both continuous (Lebesgue) and discrete cost functions. We show the efficacy of the proposed algorithm via various numerical examples. Furthermore, we analyze under what conditions the data-driven approximant can be obtained via projection.","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":"134 1","pages":"554-"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1500678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a unifying framework for $\mathcal{L}_2$-optimal reduced-order modeling for linear time-invariant dynamical systems and stationary parametric problems. Using parameter-separable forms of the reduced-model quantities, we derive the gradients of the $\mathcal{L}_2$ cost function with respect to the reduced matrices, which then allows a non-intrusive, data-driven, gradient-based descent algorithm to construct the optimal approximant using only output samples. By choosing an appropriate measure, the framework covers both continuous (Lebesgue) and discrete cost functions. We show the efficacy of the proposed algorithm via various numerical examples. Furthermore, we analyze under what conditions the data-driven approximant can be obtained via projection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
\(\boldsymbol{\mathcal{L}_2}\)-使用参数可分形式的最优降阶建模
我们为线性定常动力系统和平稳参数问题的$\mathcal{L}_2$-最优降阶建模提供了一个统一的框架。利用约简模型量的参数可分形式,我们推导了$\mathcal{L}_2$代价函数相对于约简矩阵的梯度,从而允许非侵入式的、数据驱动的、基于梯度的下降算法仅使用输出样本来构造最优逼近。通过选择适当的度量,框架涵盖了连续(勒贝格)和离散成本函数。通过数值算例验证了该算法的有效性。进一步,我们分析了在什么条件下可以通过投影获得数据驱动的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Operator-Splitting Optimization Approach for Phase-Field Simulation of Equilibrium Shapes of Crystals A Simple and Efficient Convex Optimization Based Bound-Preserving High Order Accurate Limiter for Cahn-Hilliard-Navier-Stokes System Almost Complete Analytical Integration in Galerkin Boundary Element Methods Sublinear Algorithms for Local Graph-Centrality Estimation Deterministic \(\boldsymbol{(\unicode{x00BD}+\varepsilon)}\) -Approximation for Submodular Maximization over a Matroid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1