Penalised, post-pretest, and post-shrinkage strategies in nonlinear growth models

Pub Date : 2022-09-04 DOI:10.1111/anzs.12373
Janjira Piladaeng, S. Ejaz Ahmed, Supranee Lisawadi
{"title":"Penalised, post-pretest, and post-shrinkage strategies in nonlinear growth models","authors":"Janjira Piladaeng,&nbsp;S. Ejaz Ahmed,&nbsp;Supranee Lisawadi","doi":"10.1111/anzs.12373","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In nonlinear growth models, we considered the parameter estimation under subspace information for low-dimensional and high-dimensional data. We proposed novel estimators based on pretest and shrinkage strategies to improve the estimation efficiency and to establish asymptotic properties. We used simulation studies and a real data example to confirm the theoretical results. We also applied two well-known penalised methods—least absolute shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO)—for the dimensional reduction of the predictor variables. The results demonstrated that the pretest and shrinkage estimation strategies performed well in parameter estimations when the subspace information was incorrect for both low- and high-dimensional regimes.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In nonlinear growth models, we considered the parameter estimation under subspace information for low-dimensional and high-dimensional data. We proposed novel estimators based on pretest and shrinkage strategies to improve the estimation efficiency and to establish asymptotic properties. We used simulation studies and a real data example to confirm the theoretical results. We also applied two well-known penalised methods—least absolute shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO)—for the dimensional reduction of the predictor variables. The results demonstrated that the pretest and shrinkage estimation strategies performed well in parameter estimations when the subspace information was incorrect for both low- and high-dimensional regimes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
非线性增长模型中的惩罚、后预测和后收缩策略
在非线性增长模型中,我们考虑了低维和高维数据在子空间信息下的参数估计。我们提出了基于预检验和收缩策略的新估计器,以提高估计效率并建立渐近性质。通过仿真研究和实际数据算例对理论结果进行了验证。我们还应用了两种众所周知的惩罚方法-最小绝对收缩和选择算子(LASSO)和自适应LASSO (aLASSO) -用于预测变量的降维。结果表明,当子空间信息不正确时,预测试和收缩估计策略在低维和高维区域的参数估计中都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1