{"title":"Minimizing Average Regret Ratio in Database","authors":"Sepanta Zeighami, R. C. Wong","doi":"10.1145/2882903.2914831","DOIUrl":null,"url":null,"abstract":"We propose \"average regret ratio\" as a metric to measure users' satisfaction after a user sees k selected points of a database, instead of all of the points in the database. We introduce the average regret ratio as another means of multi-criteria decision making. Unlike the original k-regret operator that uses the maximum regret ratio, the average regret ratio takes into account the satisfaction of a general user. While assuming the existence of some utility functions for the users, in contrast to the top-k query, it does not require a user to input his or her utility function but instead depends on the probability distribution of the utility functions. We prove that the average regret ratio is a supermodular function and provide a polynomial-time approximation algorithm to find the average regret ratio minimizing set for a database.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We propose "average regret ratio" as a metric to measure users' satisfaction after a user sees k selected points of a database, instead of all of the points in the database. We introduce the average regret ratio as another means of multi-criteria decision making. Unlike the original k-regret operator that uses the maximum regret ratio, the average regret ratio takes into account the satisfaction of a general user. While assuming the existence of some utility functions for the users, in contrast to the top-k query, it does not require a user to input his or her utility function but instead depends on the probability distribution of the utility functions. We prove that the average regret ratio is a supermodular function and provide a polynomial-time approximation algorithm to find the average regret ratio minimizing set for a database.