Gaussian process NARX model for damage detection in composite aircraft structures

S. da Silva, Luis G. G. Villani, M. Rébillat, N. Mechbal
{"title":"Gaussian process NARX model for damage detection in composite aircraft structures","authors":"S. da Silva, Luis G. G. Villani, M. Rébillat, N. Mechbal","doi":"10.1115/1.4052956","DOIUrl":null,"url":null,"abstract":"\n This paper demonstrates the Gaussian process regression model's applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs' patches bonded in a composite aeronautical structure for concerning a novel SHM strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"5 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4052956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates the Gaussian process regression model's applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs' patches bonded in a composite aeronautical structure for concerning a novel SHM strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合材料飞机结构损伤检测的高斯过程NARX模型
本文利用复合材料航空结构中PZTs贴片的实验数据,验证了高斯过程回归模型与非线性自回归外源(NARX)框架相结合的适用性。在加劲肋底部中心处采用健康状态和模拟损伤的加劲碳-环氧板。比较模拟误差方面的性能,观察所识别的模型是否能够在考虑噪声或可能的温度变化产生的混杂效应的情况下,以置信限表示和预测波形,假设使用主成分分析对数据集进行预处理。GP-NARX识别模型的结果证明,即使在健康和受损条件下模型不确定性传播的情况下,正确分类的错误警报数量也减少了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
9.10%
发文量
25
期刊最新文献
Enhancement of Contact Acoustic Nonlinearity Effect in a Concrete Beam using Ambient Vibrations Identification of spalling fault size of ball bearing based on modified energy value Deep Learning based Time-Series Classification for Robotic Inspection of Pipe Condition using Non-Contact Ultrasonic Testing AI-enabled crack-length estimation from acoustic emission signal signatures Longitudinal wave propagation in an elastic cylinder embedded in a viscoelastic fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1