ARShadowGAN: Shadow Generative Adversarial Network for Augmented Reality in Single Light Scenes

Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao
{"title":"ARShadowGAN: Shadow Generative Adversarial Network for Augmented Reality in Single Light Scenes","authors":"Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao","doi":"10.1109/cvpr42600.2020.00816","DOIUrl":null,"url":null,"abstract":"Generating virtual object shadows consistent with the real-world environment shading effects is important but challenging in computer vision and augmented reality applications. To address this problem, we propose an end-to-end Generative Adversarial Network for shadow generation named ARShadowGAN for augmented reality in single light scenes. Our ARShadowGAN makes full use of attention mechanism and is able to directly model the mapping relation between the virtual object shadow and the real-world environment without any explicit estimation of the illumination and 3D geometric information. In addition, we collect an image set which provides rich clues for shadow generation and construct a dataset for training and evaluating our proposed ARShadowGAN. The extensive experimental results show that our proposed ARShadowGAN is capable of directly generating plausible virtual object shadows in single light scenes. Our source code is available at https://github.com/ldq9526/ARShadowGAN.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"34 1","pages":"8136-8145"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Generating virtual object shadows consistent with the real-world environment shading effects is important but challenging in computer vision and augmented reality applications. To address this problem, we propose an end-to-end Generative Adversarial Network for shadow generation named ARShadowGAN for augmented reality in single light scenes. Our ARShadowGAN makes full use of attention mechanism and is able to directly model the mapping relation between the virtual object shadow and the real-world environment without any explicit estimation of the illumination and 3D geometric information. In addition, we collect an image set which provides rich clues for shadow generation and construct a dataset for training and evaluating our proposed ARShadowGAN. The extensive experimental results show that our proposed ARShadowGAN is capable of directly generating plausible virtual object shadows in single light scenes. Our source code is available at https://github.com/ldq9526/ARShadowGAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARShadowGAN:用于单光场景增强现实的阴影生成对抗网络
在计算机视觉和增强现实应用中,生成与现实环境阴影效果一致的虚拟物体阴影非常重要,但也具有挑战性。为了解决这个问题,我们提出了一个端到端的生成对抗网络,用于阴影生成,名为ARShadowGAN,用于增强现实中的单光场景。我们的ARShadowGAN充分利用了注意机制,能够直接建模虚拟物体阴影与现实环境之间的映射关系,而无需显式估计照明和三维几何信息。此外,我们收集了一个图像集,为阴影生成提供了丰富的线索,并构建了一个数据集,用于训练和评估我们提出的ARShadowGAN。大量的实验结果表明,我们提出的ARShadowGAN能够在单光场景中直接生成逼真的虚拟物体阴影。我们的源代码可从https://github.com/ldq9526/ARShadowGAN获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1