R. Irkimbekov, A. Vurim, S. V. Bedenko, A. Surayev, G. Vityuk
{"title":"Neutron Background of Composite Low-Enriched Uranium Fuel of the IVG.1M Research Reactor","authors":"R. Irkimbekov, A. Vurim, S. V. Bedenko, A. Surayev, G. Vityuk","doi":"10.26583/npe.2022.1.11","DOIUrl":null,"url":null,"abstract":"IVG.1M is a research pressurized water reactor designed to use high-enriched fuel. As part of the core conversion program, the reactor will be switched to a new low-enriched composite uranium fuel. Further operation of the reactor is determined by the availability of fresh fuel to replace the core after the next campaign and the possibility of ensuring safe storage of irradiated spent nuclear fuel (SNF) unloaded from the core. The SNF storage conditions are assessed in terms of ensuring nuclear and radiation safety.\n Radiation safety of the research reactor fuel storage is achieved, first of all, by solving problems of protection against γ-radiation, while neutron radiation, as a rule, is not considered due to its significantly lower intensity compared to γ-radiation. As for the new low-enriched fuel of the IVG.1M reactor, which is characterized by a set of elements with low and medium atomic masses, on which the (α, n) reaction is possible, the assessment of the neutron component is a necessary procedure to ensure safe fuel storage.\n The authors of the article propose a procedure for calculating the neutron component of the radiation characteristics of fresh and irradiated composite fuel of the IVG.1M reactor, and also estimate the (α, n)-component. The results of the research will be useful in selecting SNF storage and transportation technologies as well as in providing scientific justification for the possibility of using neutron radiation to control burnup.\n The research was carried out using verified computational codes MCNP5 and Sources-4C, high-precision experimental EXFOR and computational ENDSF data, as well as evaluated nuclear data libraries.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
IVG.1M is a research pressurized water reactor designed to use high-enriched fuel. As part of the core conversion program, the reactor will be switched to a new low-enriched composite uranium fuel. Further operation of the reactor is determined by the availability of fresh fuel to replace the core after the next campaign and the possibility of ensuring safe storage of irradiated spent nuclear fuel (SNF) unloaded from the core. The SNF storage conditions are assessed in terms of ensuring nuclear and radiation safety.
Radiation safety of the research reactor fuel storage is achieved, first of all, by solving problems of protection against γ-radiation, while neutron radiation, as a rule, is not considered due to its significantly lower intensity compared to γ-radiation. As for the new low-enriched fuel of the IVG.1M reactor, which is characterized by a set of elements with low and medium atomic masses, on which the (α, n) reaction is possible, the assessment of the neutron component is a necessary procedure to ensure safe fuel storage.
The authors of the article propose a procedure for calculating the neutron component of the radiation characteristics of fresh and irradiated composite fuel of the IVG.1M reactor, and also estimate the (α, n)-component. The results of the research will be useful in selecting SNF storage and transportation technologies as well as in providing scientific justification for the possibility of using neutron radiation to control burnup.
The research was carried out using verified computational codes MCNP5 and Sources-4C, high-precision experimental EXFOR and computational ENDSF data, as well as evaluated nuclear data libraries.
期刊介绍:
The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.