Neutron Background of Composite Low-Enriched Uranium Fuel of the IVG.1M Research Reactor

R. Irkimbekov, A. Vurim, S. V. Bedenko, A. Surayev, G. Vityuk
{"title":"Neutron Background of Composite Low-Enriched Uranium Fuel of the IVG.1M Research Reactor","authors":"R. Irkimbekov, A. Vurim, S. V. Bedenko, A. Surayev, G. Vityuk","doi":"10.26583/npe.2022.1.11","DOIUrl":null,"url":null,"abstract":"IVG.1M is a research pressurized water reactor designed to use high-enriched fuel. As part of the core conversion program, the reactor will be switched to a new low-enriched composite uranium fuel. Further operation of the reactor is determined by the availability of fresh fuel to replace the core after the next campaign and the possibility of ensuring safe storage of irradiated spent nuclear fuel (SNF) unloaded from the core. The SNF storage conditions are assessed in terms of ensuring nuclear and radiation safety.\n Radiation safety of the research reactor fuel storage is achieved, first of all, by solving problems of protection against γ-radiation, while neutron radiation, as a rule, is not considered due to its significantly lower intensity compared to γ-radiation. As for the new low-enriched fuel of the IVG.1M reactor, which is characterized by a set of elements with low and medium atomic masses, on which the (α, n) reaction is possible, the assessment of the neutron component is a necessary procedure to ensure safe fuel storage.\n The authors of the article propose a procedure for calculating the neutron component of the radiation characteristics of fresh and irradiated composite fuel of the IVG.1M reactor, and also estimate the (α, n)-component. The results of the research will be useful in selecting SNF storage and transportation technologies as well as in providing scientific justification for the possibility of using neutron radiation to control burnup.\n The research was carried out using verified computational codes MCNP5 and Sources-4C, high-precision experimental EXFOR and computational ENDSF data, as well as evaluated nuclear data libraries.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

IVG.1M is a research pressurized water reactor designed to use high-enriched fuel. As part of the core conversion program, the reactor will be switched to a new low-enriched composite uranium fuel. Further operation of the reactor is determined by the availability of fresh fuel to replace the core after the next campaign and the possibility of ensuring safe storage of irradiated spent nuclear fuel (SNF) unloaded from the core. The SNF storage conditions are assessed in terms of ensuring nuclear and radiation safety. Radiation safety of the research reactor fuel storage is achieved, first of all, by solving problems of protection against γ-radiation, while neutron radiation, as a rule, is not considered due to its significantly lower intensity compared to γ-radiation. As for the new low-enriched fuel of the IVG.1M reactor, which is characterized by a set of elements with low and medium atomic masses, on which the (α, n) reaction is possible, the assessment of the neutron component is a necessary procedure to ensure safe fuel storage. The authors of the article propose a procedure for calculating the neutron component of the radiation characteristics of fresh and irradiated composite fuel of the IVG.1M reactor, and also estimate the (α, n)-component. The results of the research will be useful in selecting SNF storage and transportation technologies as well as in providing scientific justification for the possibility of using neutron radiation to control burnup. The research was carried out using verified computational codes MCNP5 and Sources-4C, high-precision experimental EXFOR and computational ENDSF data, as well as evaluated nuclear data libraries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IVG.1M研究堆复合低浓铀燃料的中子本底
IVG.1M是一种研究压水反应堆,设计用于使用高浓燃料。作为堆芯转换计划的一部分,该反应堆将改用一种新的低浓度复合铀燃料。反应堆的进一步运行取决于在下一次运行后是否有新燃料替代堆芯,以及是否有可能确保安全储存从堆芯卸载的辐照乏核燃料(SNF)。从确保核与辐射安全的角度对SNF储存条件进行了评估。研究堆燃料储存的辐射安全首先是通过解决γ辐射防护问题来实现的,而中子辐射由于其强度明显低于γ辐射,因此通常不考虑中子辐射。对于IVG.1M反应堆新型低浓燃料,其特点是具有一组低、中原子质量的元素,可以在其上发生(α, n)反应,中子成分的评估是保证燃料安全储存的必要步骤。本文提出了一种计算IVG.1M反应堆新鲜和辐照复合燃料辐射特性中子分量的方法,并对(α, n)分量进行了估计。研究结果将有助于选择SNF储存和运输技术,并为利用中子辐射控制燃耗的可能性提供科学依据。研究使用经过验证的计算代码MCNP5和Sources-4C,高精度实验EXFOR和计算ENDSF数据,以及评估的核数据库进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
期刊最新文献
Studies of the BN-350 Reactor Fuel, Structural and Absorbing Materials at the Hot Laboratory of the IPPE Study into the dependence of the Co-60 and Lu-177g efficiency production on the energy structure of neutron flux density On Dilation of the BN-350 Reactor Fuel Assemblies Reprocessing of Primary and Secondary Coolants During the BN-350 Reactor Decommissioning Principles of Construction and Development of an Automatic Protection System for Steam Generators of Fast Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1