{"title":"Dual-Population Co-Evolution Multi-Objective Optimization Algorithm and Its Application: Power Allocation Optimization of Mobile Base Stations","authors":"Bo Yu, Fahui Gu","doi":"10.4018/ijcini.296258","DOIUrl":null,"url":null,"abstract":"In the multi-objective optimization algorithm, the parameter strategy has a huge impact on the performance of the algorithm, and it is difficult to set a set of parameters with excellent distribution and convergence performance in the actual optimization process. Based on the MOEA/D algorithm framework, this paper construct an improved dual-population co-evolution MOEA/D algorithm by adopt the idea of dual-population co-evolution. The simulation test of the benchmark functions shows that the proposed dual-population co-evolution MOEA/D algorithm have significant improvements in IGD and HV indicators compare with three other comparison algorithms. Finally, the application of the LTE base station power allocation model also verifies the effectiveness of the proposed algorithm.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"37 1","pages":"1-21"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.296258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the multi-objective optimization algorithm, the parameter strategy has a huge impact on the performance of the algorithm, and it is difficult to set a set of parameters with excellent distribution and convergence performance in the actual optimization process. Based on the MOEA/D algorithm framework, this paper construct an improved dual-population co-evolution MOEA/D algorithm by adopt the idea of dual-population co-evolution. The simulation test of the benchmark functions shows that the proposed dual-population co-evolution MOEA/D algorithm have significant improvements in IGD and HV indicators compare with three other comparison algorithms. Finally, the application of the LTE base station power allocation model also verifies the effectiveness of the proposed algorithm.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.