Program Synthesis Using Natural Language

Aditya Desai, Sumit Gulwani, V. Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, R. Sailesh, Subhajit Roy
{"title":"Program Synthesis Using Natural Language","authors":"Aditya Desai, Sumit Gulwani, V. Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, R. Sailesh, Subhajit Roy","doi":"10.1145/2884781.2884786","DOIUrl":null,"url":null,"abstract":"Interacting with computers is a ubiquitous activity for millions of people. Repetitive or specialized tasks often require creation of small, often one-off, programs. End-users struggle with learning and using the myriad of domain-specific languages (DSLs) to effectively accomplish these tasks. We present a general framework for constructing program synthesizers that take natural language (NL) inputs and produce expressions in a target DSL. The framework takes as input a DSL definition and training data consisting of NL/DSL pairs. From these it constructs a synthesizer by learning optimal weights and classifiers (using NLP features) that rank the outputs of a keyword-programming based translation. We applied our framework to three domains: repetitive text editing, an intelligent tutoring system, and flight information queries. On 1200+ English descriptions, the respective synthesizers rank the desired program as the top-1 and top-3 for 80% and 90% descriptions respectively.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"63 1","pages":"345-356"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

Interacting with computers is a ubiquitous activity for millions of people. Repetitive or specialized tasks often require creation of small, often one-off, programs. End-users struggle with learning and using the myriad of domain-specific languages (DSLs) to effectively accomplish these tasks. We present a general framework for constructing program synthesizers that take natural language (NL) inputs and produce expressions in a target DSL. The framework takes as input a DSL definition and training data consisting of NL/DSL pairs. From these it constructs a synthesizer by learning optimal weights and classifiers (using NLP features) that rank the outputs of a keyword-programming based translation. We applied our framework to three domains: repetitive text editing, an intelligent tutoring system, and flight information queries. On 1200+ English descriptions, the respective synthesizers rank the desired program as the top-1 and top-3 for 80% and 90% descriptions respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自然语言的程序合成
对数百万人来说,与计算机交互是一项无处不在的活动。重复的或专门的任务通常需要创建小的,通常是一次性的程序。为了有效地完成这些任务,最终用户需要学习和使用无数特定于领域的语言(dsl)。我们提出了一个构建程序合成器的一般框架,该程序合成器接受自然语言(NL)输入并在目标DSL中产生表达式。该框架以一个DSL定义和由NL/DSL对组成的训练数据作为输入。从这些数据中,它通过学习最优权重和分类器(使用NLP特征)构建了一个合成器,该合成器对基于关键字编程的翻译的输出进行排序。我们将框架应用于三个领域:重复文本编辑、智能辅导系统和航班信息查询。在1200多个英文描述中,各自的合成器分别将所需程序评为80%和90%描述的前1名和前3名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Thread Sharing Analysis Overcoming Open Source Project Entry Barriers with a Portal for Newcomers Nomen est Omen: Exploring and Exploiting Similarities between Argument and Parameter Names Reliability of Run-Time Quality-of-Service Evaluation Using Parametric Model Checking On the Techniques We Create, the Tools We Build, and Their Misalignments: A Study of KLEE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1