ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang
{"title":"ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection","authors":"Junting Fang, Xiaoyang Tan, Yuhui Wang","doi":"10.1109/ICPR48806.2021.9412424","DOIUrl":null,"url":null,"abstract":"Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"229 1","pages":"423-430"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合神经网络的关注级联R-CNN金属表面缺陷检测
金属表面缺陷检测在生产质量控制中具有重要意义。然而,由于噪声干扰、较大的外观变化以及缺陷个体的模糊定义,这一任务非常具有挑战性。传统的图像处理方法无法有效、高效地检测出损伤区域。本文提出了一种新的缺陷检测方法——混合nms (Attention Cascade R-CNN with Mix-NMS, ACRM)来对缺陷进行鲁棒分类和定位。为了实现这一目标,本文开发了三个子模块:1)引入了一个轻量级的注意力块,提高了在空间和信道维度上捕获全局和局部特征的能力;2)我们首先将级联R-CNN应用于我们的任务,该任务利用多个检测器对检测结果进行顺序鲁棒化改进;3)我们引入了一种新的混合非最大抑制(Mix- nms)方法,它可以显著提高我们任务中冗余检测结果的过滤能力。在真实工业数据集上的大量实验表明,与现有方法相比,ACRM达到了最先进的结果,证明了我们的检测方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1