{"title":"A Data-Sharing Model to Secure Borders Using an Artificial-Intelligence-Based Risk Engine and Big-Data Concepts","authors":"Mohammad S. Al Rousan, B. Intrigila","doi":"10.3844/ajassp.2022.51.67","DOIUrl":null,"url":null,"abstract":": The primary aim of this research is to develop a framework for data management and sharing that will enable countries to share complex data about known and unknown high-risk passengers to streamline border-control security processes through the use of big data analytics and Artificial Intelligence (AI). A total of 15 semi-structured interviews were used to gather qualitative data. A thematic analysis approach was used to analyze the data and the interview data were coded using NVivo 11 qualitative-data-analysis software. Five aggregate dimensions were developed, comprising nine themes and nine sub-themes, based on 39 codes that emerged from the data. This research has several theoretical and practical contributions. Primarily, the development of an AI-based risk engine will not only improve how borders are enforced but will also lead to the integration of new technology for border control, thus boosting securitization, decreasing human factors/error, minimizing border-related crime, and helping to manage healthcare issues.","PeriodicalId":7436,"journal":{"name":"American Journal of Applied Sciences","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajassp.2022.51.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The primary aim of this research is to develop a framework for data management and sharing that will enable countries to share complex data about known and unknown high-risk passengers to streamline border-control security processes through the use of big data analytics and Artificial Intelligence (AI). A total of 15 semi-structured interviews were used to gather qualitative data. A thematic analysis approach was used to analyze the data and the interview data were coded using NVivo 11 qualitative-data-analysis software. Five aggregate dimensions were developed, comprising nine themes and nine sub-themes, based on 39 codes that emerged from the data. This research has several theoretical and practical contributions. Primarily, the development of an AI-based risk engine will not only improve how borders are enforced but will also lead to the integration of new technology for border control, thus boosting securitization, decreasing human factors/error, minimizing border-related crime, and helping to manage healthcare issues.