Thermal transport during thin-film argon evaporation over nanostructured platinum surface: A molecular dynamics study

M. Hasan, S. M. Shavik, K. F. Rabbi, K. M. Mukut, M. Alam
{"title":"Thermal transport during thin-film argon evaporation over nanostructured platinum surface: A molecular dynamics study","authors":"M. Hasan, S. M. Shavik, K. F. Rabbi, K. M. Mukut, M. Alam","doi":"10.1177/2397791418802498","DOIUrl":null,"url":null,"abstract":"Investigation of thermal transport characteristics of thin-film liquid evaporation over nanostructured surface has been conducted using molecular dynamics simulation with particular importance on the effects of the nanostructure configuration for different wall–fluid interaction strengths. The nanostructured surface considered herein comprises wall-through rectangular nanoposts placed over a flat wall. Both the substrate and the nanostructure are of platinum while argon is used as the evaporating liquid. Two different wall–fluid interaction strengths have been considered that essentially emulate both hydrophilic and hydrophobic wetting conditions for three different nanostructure configurations. The argon–platinum molecular system is first equilibrated at 90 K and then followed by a sudden increase in the wall temperature at 130 K that induces evaporation of argon laid over it. Comparative effectiveness of heat and mass transfer for different surface wetting conditions has been studied by calculating the wall heat flux and evaporative mass flux. The results obtained in this study show that heat transfer occurs more easily in cases of nanostructured surfaces than in case of flat surface. Difference in behavior of argon molecules during and after the evaporation process, that is, wall adsorption characteristics, has been found to depend on the surface wetting condition as well as on presence and configuration of nanostructure. A thermodynamic approach of energy balance shows reasonable agreement with the present molecular dynamics study.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791418802498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Investigation of thermal transport characteristics of thin-film liquid evaporation over nanostructured surface has been conducted using molecular dynamics simulation with particular importance on the effects of the nanostructure configuration for different wall–fluid interaction strengths. The nanostructured surface considered herein comprises wall-through rectangular nanoposts placed over a flat wall. Both the substrate and the nanostructure are of platinum while argon is used as the evaporating liquid. Two different wall–fluid interaction strengths have been considered that essentially emulate both hydrophilic and hydrophobic wetting conditions for three different nanostructure configurations. The argon–platinum molecular system is first equilibrated at 90 K and then followed by a sudden increase in the wall temperature at 130 K that induces evaporation of argon laid over it. Comparative effectiveness of heat and mass transfer for different surface wetting conditions has been studied by calculating the wall heat flux and evaporative mass flux. The results obtained in this study show that heat transfer occurs more easily in cases of nanostructured surfaces than in case of flat surface. Difference in behavior of argon molecules during and after the evaporation process, that is, wall adsorption characteristics, has been found to depend on the surface wetting condition as well as on presence and configuration of nanostructure. A thermodynamic approach of energy balance shows reasonable agreement with the present molecular dynamics study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米结构铂表面薄膜氩蒸发过程中的热输运:分子动力学研究
利用分子动力学模拟研究了薄膜液体蒸发在纳米结构表面上的热输运特性,特别重视纳米结构构型对不同壁流相互作用强度的影响。本文所考虑的纳米结构表面包括放置在平壁上的穿过墙壁的矩形纳米柱。衬底和纳米结构均为铂,蒸发液为氩气。考虑了两种不同的壁-流体相互作用强度,基本上模拟了三种不同纳米结构配置的亲水和疏水润湿条件。氩-铂分子系统首先在90k时达到平衡,然后在130k时壁温突然升高,导致放置在其上的氩蒸发。通过计算壁面热流密度和蒸发质量流密度,研究了不同表面润湿条件下传热传质效果的比较。研究结果表明,纳米结构表面的传热比平面表面的传热更容易发生。在蒸发过程中和蒸发后氩分子的行为差异,即壁面吸附特性,不仅取决于表面润湿条件,还取决于纳米结构的存在和配置。能量平衡的热力学方法与目前的分子动力学研究结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1