Dioxins and dioxin-like compounds: toxicity in humans and animals, sources, and behaviour in the environment

Q3 Pharmacology, Toxicology and Pharmaceutics WikiJournal of Medicine Pub Date : 2019-01-01 DOI:10.15347/wjm/2019.008
J. Tuomisto
{"title":"Dioxins and dioxin-like compounds: toxicity in humans and animals, sources, and behaviour in the environment","authors":"J. Tuomisto","doi":"10.15347/wjm/2019.008","DOIUrl":null,"url":null,"abstract":"Dioxins and dioxin-like compounds comprise a group of chemicals including polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), as well as certain dioxin-like polychlorinated biphenyls (dlPCB), and potentially others. They act via a common mechanism, stimulation of aryl hydrocarbon receptor (AH receptor, AHR), a vital transcription factor in cells. There are very high differences in potency among these compounds, i.e. in the ability to stimulate the receptor. This leads to ten thousand-fold or higher differences in doses causing similar toxic effects. Most of these compounds are eliminated very slowly in the environment, animals, or humans, which makes them persistent. They are much more soluble in fat than in water, and therefore they tend to accumulate in lipid or fatty tissues, and concentrate along the food web (bioaccumulation and biomagnification). PCDD/PCDFs are formed mostly as side products in burning processes, but PCBs were oils manufactured for many purposes. Because of toxicity and persistence, dioxin-like compounds have been regulated strictly since 1980s, and their levels in the environment and animals have decreased by an order of magnitude or more. Therefore the effects on wildlife have clearly decreased, and even populations at the top of the food web such as fish-eating birds or seals have recovered after serious effects on their reproductive capacity and developmental effects in their young especially in 1970s and 1980s. This does not exclude the possibility of some remaining effects. In humans the intake is mostly from food of animal sources, but because our diet is much more diverse than that of such hallmark animals as white-tailed eagles or seals, the concentrations never increased to similar levels. However, during 1970s and 1980s effects were probably also seen in humans, including developmental effects in teeth, sexual organs, and the development of immune systems. Both scientists and administrative bodies debate at the moment about the importance of remaining risks. This is very important, because the AH receptors seem to be physiologically important regulators of growth and development of organs, immunological development, food intake and hunger, and in addition regulate enzymes protecting us from many chemicals. Thus a certain level of activation is needed, although inappropriate stimulation of the receptor is harmful. This dualism emphasizes the importance of benefit versus risk analysis. As a whole, regulating the emissions to the environment is still highly important, but one should be very cautious in limiting consumption of important and otherwise healthy food items and e.g. breast feeding. Distinct toxic effects of high doses of dioxins in humans have been clearly demonstrated by frank poisonings and the highest occupational exposures. Hallmark effects have been skin lesions called chloracne, various developmental effects of children, and a slightly increased risk of total cancer rate. The highest dioxin levels have been ten thousand fold higher than those seen in the general population today. 1 National Institute for Health and Welfare, Kuopio, Finland *Author correspondence: j.tuomisto@dnainternet.net ORCID: 0000-0003-1710-0377 Licensed under: CC-BY Received 05-08-2019; accepted 12-12-2019 Note: This review is based on original studies and scientific reviews, independently of existing Wikipedia articles, and as interpreted by author's 35 year experience in dioxin research. However, pieces of similar information can be found in Wikipedia articles Dioxins and dioxin-like compounds, 2,3,7,8-tetrachlorodibenzodioxin, Polychlorinated dibenzodioxins, Polychlorinated dibenzofurans, Polychlorinated biphenyl, and Persistent organic pollutant. WikiJournal of Medicine, 2019, 6(1):8 doi: 10.15347/wjm/2019.008 Review Article 2 of 26 | WikiJournal of Medicine General introduction “Dioxins” is an imprecise term including structurally related groups of chemicals such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Certain polychlorinated biphenyls (dl-PCBs) and many other chemicals have dioxin-like properties. The term “dioxin-like” is used because these chemicals have a common mechanism of action, i.e. inappropriate stimulation of aryl hydrocarbon receptor (AH receptor, AHR, “dioxin receptor”). Among compounds binding to the AH receptor, the higher the binding affinity, the higher will be the toxicity. High toxicity means that even low doses or low exposure levels are sufficient to produce toxic responses. Compounds with lower affinity for the AH receptor require higher doses to elicit similar toxic effects. Low-affinity compounds (e.g. some PCBs, usually at relatively high doses) can elicit toxic effects that are different from those of characteristic dioxin-like effects of chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Dioxins are a puzzling group of chemicals that have widely diverse effects in different cell-types, tissues and animal species. Many lay people consider them only dreaded environmental “superpoisons”. But they are also highly interesting tools for studying the mechanisms of intracellular receptors, gene expression, growth and development of organs, metabolism of chemicals in the body, carcinogenesis, food intake and hunger, as well as interactions of chemicals, microbes and immunological systems. The AH receptor, the mediator of dioxin toxicity seems to be an important physiological actor in the body, a ligand-activated transcription factor functionally similar but structurally unrelated to intracellular receptors such as steroid or thyroid receptors. This reminds us of the ultimate principle of Paracelsus: all things are poisons, only the dose makes that a thing is not a poison. AH receptors are necessary for many normal biological functions, and their physiological activation regulates our wellbeing, but their inappropriate activation leads to multiple forms of toxicity. The best studied compound is the most toxic 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD). The toxicity of other compounds is compared with this prototype. TCDD is assigned a toxicity equivalence factor (TEF) of 1. The potency and toxicokinetics of other compounds vary over orders of magnitude, and therefore each compound is assigned its own TEF that may range from 1 to 0.000 03 (or lower for fish, see below). The TEF for each compound forms the basis for defining toxic equivalency (TEQ) when assessing the toxicity of mixtures. The metabolism and excretion of dioxins in mammals is generally very slow. Dioxins are also persistent and accumulate in the biosphere. Due to slow accumulation to animals and humans, delayed toxicity is the typical mode of harmful effects and the delay between exposure and effect complicates the assessment of risk from dioxins. Developmental adverse effects are seen at the lowest doses. A few dramatic cases of accidental or deliberate acute poisoning are known. Two women were poisoned in Vienna, Austria, in 1998 by large doses of TCDD. In 2004 Victor Yushchenko, then presidential candidate of Ukraine, was deliberately poisoned with a huge dose of TCDD. A widely known dioxin accident took place in Seveso, Italy in 1976. These and similar high-dose incidents have delineated the acute effects on humans. As described in detail later in this article it is more difficult to ascertain, precisely, what are the human health effects of chronic low-dose exposures to dioxin-like compounds. This remains a contentious issue of importance to regulatory agencies as well as to the general public. For a short account of historical legacies of dioxins see Weber et al. Due to intensive research efforts dioxin toxicity is known and understood better than that of most environmental toxic agents. On the other hand, it is beguilingly complicated.","PeriodicalId":36272,"journal":{"name":"WikiJournal of Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WikiJournal of Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15347/wjm/2019.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 17

Abstract

Dioxins and dioxin-like compounds comprise a group of chemicals including polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), as well as certain dioxin-like polychlorinated biphenyls (dlPCB), and potentially others. They act via a common mechanism, stimulation of aryl hydrocarbon receptor (AH receptor, AHR), a vital transcription factor in cells. There are very high differences in potency among these compounds, i.e. in the ability to stimulate the receptor. This leads to ten thousand-fold or higher differences in doses causing similar toxic effects. Most of these compounds are eliminated very slowly in the environment, animals, or humans, which makes them persistent. They are much more soluble in fat than in water, and therefore they tend to accumulate in lipid or fatty tissues, and concentrate along the food web (bioaccumulation and biomagnification). PCDD/PCDFs are formed mostly as side products in burning processes, but PCBs were oils manufactured for many purposes. Because of toxicity and persistence, dioxin-like compounds have been regulated strictly since 1980s, and their levels in the environment and animals have decreased by an order of magnitude or more. Therefore the effects on wildlife have clearly decreased, and even populations at the top of the food web such as fish-eating birds or seals have recovered after serious effects on their reproductive capacity and developmental effects in their young especially in 1970s and 1980s. This does not exclude the possibility of some remaining effects. In humans the intake is mostly from food of animal sources, but because our diet is much more diverse than that of such hallmark animals as white-tailed eagles or seals, the concentrations never increased to similar levels. However, during 1970s and 1980s effects were probably also seen in humans, including developmental effects in teeth, sexual organs, and the development of immune systems. Both scientists and administrative bodies debate at the moment about the importance of remaining risks. This is very important, because the AH receptors seem to be physiologically important regulators of growth and development of organs, immunological development, food intake and hunger, and in addition regulate enzymes protecting us from many chemicals. Thus a certain level of activation is needed, although inappropriate stimulation of the receptor is harmful. This dualism emphasizes the importance of benefit versus risk analysis. As a whole, regulating the emissions to the environment is still highly important, but one should be very cautious in limiting consumption of important and otherwise healthy food items and e.g. breast feeding. Distinct toxic effects of high doses of dioxins in humans have been clearly demonstrated by frank poisonings and the highest occupational exposures. Hallmark effects have been skin lesions called chloracne, various developmental effects of children, and a slightly increased risk of total cancer rate. The highest dioxin levels have been ten thousand fold higher than those seen in the general population today. 1 National Institute for Health and Welfare, Kuopio, Finland *Author correspondence: j.tuomisto@dnainternet.net ORCID: 0000-0003-1710-0377 Licensed under: CC-BY Received 05-08-2019; accepted 12-12-2019 Note: This review is based on original studies and scientific reviews, independently of existing Wikipedia articles, and as interpreted by author's 35 year experience in dioxin research. However, pieces of similar information can be found in Wikipedia articles Dioxins and dioxin-like compounds, 2,3,7,8-tetrachlorodibenzodioxin, Polychlorinated dibenzodioxins, Polychlorinated dibenzofurans, Polychlorinated biphenyl, and Persistent organic pollutant. WikiJournal of Medicine, 2019, 6(1):8 doi: 10.15347/wjm/2019.008 Review Article 2 of 26 | WikiJournal of Medicine General introduction “Dioxins” is an imprecise term including structurally related groups of chemicals such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Certain polychlorinated biphenyls (dl-PCBs) and many other chemicals have dioxin-like properties. The term “dioxin-like” is used because these chemicals have a common mechanism of action, i.e. inappropriate stimulation of aryl hydrocarbon receptor (AH receptor, AHR, “dioxin receptor”). Among compounds binding to the AH receptor, the higher the binding affinity, the higher will be the toxicity. High toxicity means that even low doses or low exposure levels are sufficient to produce toxic responses. Compounds with lower affinity for the AH receptor require higher doses to elicit similar toxic effects. Low-affinity compounds (e.g. some PCBs, usually at relatively high doses) can elicit toxic effects that are different from those of characteristic dioxin-like effects of chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Dioxins are a puzzling group of chemicals that have widely diverse effects in different cell-types, tissues and animal species. Many lay people consider them only dreaded environmental “superpoisons”. But they are also highly interesting tools for studying the mechanisms of intracellular receptors, gene expression, growth and development of organs, metabolism of chemicals in the body, carcinogenesis, food intake and hunger, as well as interactions of chemicals, microbes and immunological systems. The AH receptor, the mediator of dioxin toxicity seems to be an important physiological actor in the body, a ligand-activated transcription factor functionally similar but structurally unrelated to intracellular receptors such as steroid or thyroid receptors. This reminds us of the ultimate principle of Paracelsus: all things are poisons, only the dose makes that a thing is not a poison. AH receptors are necessary for many normal biological functions, and their physiological activation regulates our wellbeing, but their inappropriate activation leads to multiple forms of toxicity. The best studied compound is the most toxic 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD). The toxicity of other compounds is compared with this prototype. TCDD is assigned a toxicity equivalence factor (TEF) of 1. The potency and toxicokinetics of other compounds vary over orders of magnitude, and therefore each compound is assigned its own TEF that may range from 1 to 0.000 03 (or lower for fish, see below). The TEF for each compound forms the basis for defining toxic equivalency (TEQ) when assessing the toxicity of mixtures. The metabolism and excretion of dioxins in mammals is generally very slow. Dioxins are also persistent and accumulate in the biosphere. Due to slow accumulation to animals and humans, delayed toxicity is the typical mode of harmful effects and the delay between exposure and effect complicates the assessment of risk from dioxins. Developmental adverse effects are seen at the lowest doses. A few dramatic cases of accidental or deliberate acute poisoning are known. Two women were poisoned in Vienna, Austria, in 1998 by large doses of TCDD. In 2004 Victor Yushchenko, then presidential candidate of Ukraine, was deliberately poisoned with a huge dose of TCDD. A widely known dioxin accident took place in Seveso, Italy in 1976. These and similar high-dose incidents have delineated the acute effects on humans. As described in detail later in this article it is more difficult to ascertain, precisely, what are the human health effects of chronic low-dose exposures to dioxin-like compounds. This remains a contentious issue of importance to regulatory agencies as well as to the general public. For a short account of historical legacies of dioxins see Weber et al. Due to intensive research efforts dioxin toxicity is known and understood better than that of most environmental toxic agents. On the other hand, it is beguilingly complicated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二恶英和类二恶英化合物:对人类和动物的毒性、来源和在环境中的行为
二恶英是一组令人费解的化学物质,对不同的细胞类型、组织和动物物种有着广泛不同的影响。许多俗人认为它们只是可怕的环境“超级毒药”。但它们也是研究细胞内受体、基因表达、器官生长发育、体内化学物质代谢、致癌、食物摄入和饥饿以及化学物质、微生物和免疫系统相互作用机制的非常有趣的工具。AH受体,二恶英毒性的介质似乎是体内一个重要的生理行为者,是一种配体激活的转录因子,与细胞内受体如类固醇或甲状腺受体功能相似,但在结构上不相关。这让我们想起了巴拉塞尔苏斯的终极原则:所有的东西都是毒药,只是剂量决定了一个东西不是毒药。AH受体是许多正常生物功能所必需的,它们的生理激活调节着我们的健康,但它们的不适当激活会导致多种形式的毒性。研究得最好的化合物是毒性最大的2,3,7,8四氯二苯并-对二恶英(TCDD)。其他化合物的毒性与该原型进行了比较。TCDD的毒性等效系数(TEF)为1。其他化合物的效力和毒性动力学变化超过数量级,因此每种化合物都有自己的TEF,范围从1到0.00003(或更低,对鱼来说,见下文)。在评估混合物的毒性时,每种化合物的TEF构成了定义毒性当量(TEQ)的基础。哺乳动物对二恶英的代谢和排泄通常非常缓慢。二恶英还具有持久性,并在生物圈中积累。由于二恶英对动物和人类的累积缓慢,延迟毒性是有害影响的典型模式,暴露和影响之间的延迟使二恶英风险评估复杂化。在最低剂量下也会出现发育不良反应。一些意外或故意急性中毒的戏剧性案例是已知的。1998年,奥地利维也纳两名妇女因大剂量TCDD中毒。2004年,当时的乌克兰总统候选人维克托•尤先科(Victor Yushchenko)被人故意用大剂量的TCDD下毒。1976年,意大利塞韦索发生了一起广为人知的二恶英事故。这些和类似的高剂量事件描述了对人类的急性影响。正如本文后面详细描述的那样,要准确确定长期低剂量暴露于二恶英类化合物对人体健康的影响更为困难。对于监管机构和公众来说,这仍然是一个有争议的重要问题。对于二恶英的历史遗产的简短说明,见韦伯等人。由于密集的研究工作,二恶英的毒性比大多数环境毒性物质更为人所知和了解。另一方面,它复杂得令人迷惑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WikiJournal of Medicine
WikiJournal of Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
0.80
自引率
0.00%
发文量
6
审稿时长
4 weeks
期刊最新文献
Extract of Laurus nobilis attenuates inflammation and epithelial ulcerations in an experimental model of inflammatory bowel disease Where experts and amateurs meet: the ideological hobby of medical volunteering on Wikipedia Impact of xenogenic mesenchimal stem cells secretome on a humoral component of the immune system Alternative androgen pathways Resources for the Assessment and Treatment of Substance Use Disorder in Adolescents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1