Supervised Machine Learning Approaches for Medical Data Classification

A. K. Dalai, A. K. Jena, B. Ramana, B. Maneesha, Nibedan Panda
{"title":"Supervised Machine Learning Approaches for Medical Data Classification","authors":"A. K. Dalai, A. K. Jena, B. Ramana, B. Maneesha, Nibedan Panda","doi":"10.1109/AISP53593.2022.9760688","DOIUrl":null,"url":null,"abstract":"Recently there is an emergent curiosity among researchers to apply machine learning algorithms over diversified real world complications to get simpler outcome. The notion behind this briefing is to represent the basic machine learning algorithms and its applicability in current research. Broadly machine learning algorithms falls to the category of either supervised or unsupervised learning technique. In this paper we have discussed supervised machine learning techniques with its simplicity to apply over various problem areas and simultaneously the challenges for such algorithms. Furthermore SVM and Random Forest (RF) are utilised learn, categorise, and compare cancer, liver, diabetes, iris, and heart data in this study. For all considered data sets, the results of SVM and RF are compared. The results are properly analysed in order to develop better prediction learning techniques.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"29 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently there is an emergent curiosity among researchers to apply machine learning algorithms over diversified real world complications to get simpler outcome. The notion behind this briefing is to represent the basic machine learning algorithms and its applicability in current research. Broadly machine learning algorithms falls to the category of either supervised or unsupervised learning technique. In this paper we have discussed supervised machine learning techniques with its simplicity to apply over various problem areas and simultaneously the challenges for such algorithms. Furthermore SVM and Random Forest (RF) are utilised learn, categorise, and compare cancer, liver, diabetes, iris, and heart data in this study. For all considered data sets, the results of SVM and RF are compared. The results are properly analysed in order to develop better prediction learning techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗数据分类的监督机器学习方法
最近,研究人员对将机器学习算法应用于多样化的现实世界复杂性以获得更简单的结果产生了浓厚的兴趣。本简报背后的概念是代表基本的机器学习算法及其在当前研究中的适用性。从广义上讲,机器学习算法属于监督学习技术或无监督学习技术的范畴。在本文中,我们讨论了监督机器学习技术,它可以简单地应用于各种问题领域,同时也讨论了这种算法面临的挑战。此外,本研究利用SVM和随机森林(RF)对癌症、肝脏、糖尿病、虹膜和心脏数据进行学习、分类和比较。对于所有考虑的数据集,将SVM和RF的结果进行比较。为了开发更好的预测学习技术,对结果进行了适当的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1