M. H. Khaneghahi, Divya Kamireddi, Seyed Ali Rahmaninezhad, C. Schauer, Christopher M. Sales, A. Najafi, Aidan Cotton, Amir Sadighi, Y. Farnam
{"title":"Development of bio-inspired multi-functional polymeric-based fibers (BioFiber) for advanced delivery of bacterial-based self-healing agent in concrete","authors":"M. H. Khaneghahi, Divya Kamireddi, Seyed Ali Rahmaninezhad, C. Schauer, Christopher M. Sales, A. Najafi, Aidan Cotton, Amir Sadighi, Y. Farnam","doi":"10.1051/matecconf/202337802001","DOIUrl":null,"url":null,"abstract":"The goal of this research is to develop innovative damage-responsive bacterial-based self-healing fibers (hereafter called BioFiber) that can be incorporated into concrete to enable two functionalities simultaneously: (1) crack bridging functionality to control crack growth and (2) crack healing functionality when a crack occurs. The BioFiber is comprised of a load-bearing core fiber, a sheath of bacteria-laden hydrogel, and an outer impermeable strain-responsive shell coating. An instant soaking manufacturing process was used with multiple reservoirs containing bacteria-laden, hydrophilic prepolymer and crosslinking reagents to develop BioFiber. Sodium-alginate was used as a prepolymer to produce calcium-alginate hydrogel via ionic crosslinking on the core fiber. The dormant bacteria (spore) of Lysinibacillus sphaericus was incorporated in hydrogel as a self-healing agent. Then, an impermeable polymeric coating was applied to the hydrogel-coated core fibers. The impermeable strain-responsive shell coating material was manufactured using the polymer blend of polystyrene and polylactic acid. The high swelling capacity of calcium-alginate provides the water required for the microbially induced calcium carbonate precipitation (MICP) chemical pathway, i.e., ureolysis in this study. The strain-responsive impermeable coating provides adequate flexibility during concrete casting to protect the spores and alginate before cracking and sufficient stress-strain behavior to grant damage-responsiveness upon crack occurrence to activate MICP. To evaluate the behavior of developed BioFiber, the swelling capacity of the hydrogel, the impermeability of shell coating, the spore casting survivability, and MICP activities were investigated.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337802001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The goal of this research is to develop innovative damage-responsive bacterial-based self-healing fibers (hereafter called BioFiber) that can be incorporated into concrete to enable two functionalities simultaneously: (1) crack bridging functionality to control crack growth and (2) crack healing functionality when a crack occurs. The BioFiber is comprised of a load-bearing core fiber, a sheath of bacteria-laden hydrogel, and an outer impermeable strain-responsive shell coating. An instant soaking manufacturing process was used with multiple reservoirs containing bacteria-laden, hydrophilic prepolymer and crosslinking reagents to develop BioFiber. Sodium-alginate was used as a prepolymer to produce calcium-alginate hydrogel via ionic crosslinking on the core fiber. The dormant bacteria (spore) of Lysinibacillus sphaericus was incorporated in hydrogel as a self-healing agent. Then, an impermeable polymeric coating was applied to the hydrogel-coated core fibers. The impermeable strain-responsive shell coating material was manufactured using the polymer blend of polystyrene and polylactic acid. The high swelling capacity of calcium-alginate provides the water required for the microbially induced calcium carbonate precipitation (MICP) chemical pathway, i.e., ureolysis in this study. The strain-responsive impermeable coating provides adequate flexibility during concrete casting to protect the spores and alginate before cracking and sufficient stress-strain behavior to grant damage-responsiveness upon crack occurrence to activate MICP. To evaluate the behavior of developed BioFiber, the swelling capacity of the hydrogel, the impermeability of shell coating, the spore casting survivability, and MICP activities were investigated.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.