Chitosan/Hydroxyapatite Scaffolds with P28 as a Promising Osteoinductive Scaffold for Bone Healing Applications

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Micro & Nano Letters Pub Date : 2023-01-31 DOI:10.3390/micro3010010
Farah Alwani Azaman, F. Daubiné, Amélie Lebatard, Margaret Brennan Fournet, D. Devine
{"title":"Chitosan/Hydroxyapatite Scaffolds with P28 as a Promising Osteoinductive Scaffold for Bone Healing Applications","authors":"Farah Alwani Azaman, F. Daubiné, Amélie Lebatard, Margaret Brennan Fournet, D. Devine","doi":"10.3390/micro3010010","DOIUrl":null,"url":null,"abstract":"Despite bone’s inherent ability to heal, large bone defects remain a major clinical concern. This study proposes an off-the-shelf treatment combining chitosan/hydroxyapatite (CS/HAp) scaffolds, covalently linked with either bone morphogenetic protein-2 (BMP-2) or its related peptide P28 via a UV crosslinking process. Although covalently binding the growth factors was reported as a great alternative to the conventionally physical adsorption and encapsulation methods, this method presents the risk of altering the molecular activity and interaction of the growth factors. Therefore, alkaline phosphatase (ALP) activity and alizarin red staining (ARS) with a quantitative cetylpyridinium chloride (CPC) assay were conducted to validate that our photo-crosslinking fabrication method did not interfere with the functionality of the growth factors. The ALP activity of C2C12 with 100 µg/mL P28 was found to be comparable to 0.5 µg/mL BMP-2 after two weeks, where 0.001 U/mL was recorded for both treatments. The C2C12 cultured with CS/HAp/BMP-2 and CS/HAp/P28 scaffolds also showed an increased ALP activity compared to the negative control. ARS-CPC assay presented the highest optical density in 0.3 µg/mL BMP-2 and 50 µg/mL P28, while the highest intensity of ARS was observed in C2C12 cultured with CS/HAp/BMP-2 and CS/HAp/P28 scaffolds compared to the negative controls. The osteoconductive capability of this delivery system was then investigated through a rat femoral condyle defect model, where the new bone mineral density and the bone volume increased for all CS/HAp scaffolds compared to the collagen sponge control treatment. The histological assessment showed a favourable bone regeneration efficacy of the CS/HAp/P28 compared to the CS/HAp/BMP-2 treatment, thus showing the use of CS/HAp scaffolds with P28 as a promising osteoinductive scaffold for bone healing applications.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3010010","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Despite bone’s inherent ability to heal, large bone defects remain a major clinical concern. This study proposes an off-the-shelf treatment combining chitosan/hydroxyapatite (CS/HAp) scaffolds, covalently linked with either bone morphogenetic protein-2 (BMP-2) or its related peptide P28 via a UV crosslinking process. Although covalently binding the growth factors was reported as a great alternative to the conventionally physical adsorption and encapsulation methods, this method presents the risk of altering the molecular activity and interaction of the growth factors. Therefore, alkaline phosphatase (ALP) activity and alizarin red staining (ARS) with a quantitative cetylpyridinium chloride (CPC) assay were conducted to validate that our photo-crosslinking fabrication method did not interfere with the functionality of the growth factors. The ALP activity of C2C12 with 100 µg/mL P28 was found to be comparable to 0.5 µg/mL BMP-2 after two weeks, where 0.001 U/mL was recorded for both treatments. The C2C12 cultured with CS/HAp/BMP-2 and CS/HAp/P28 scaffolds also showed an increased ALP activity compared to the negative control. ARS-CPC assay presented the highest optical density in 0.3 µg/mL BMP-2 and 50 µg/mL P28, while the highest intensity of ARS was observed in C2C12 cultured with CS/HAp/BMP-2 and CS/HAp/P28 scaffolds compared to the negative controls. The osteoconductive capability of this delivery system was then investigated through a rat femoral condyle defect model, where the new bone mineral density and the bone volume increased for all CS/HAp scaffolds compared to the collagen sponge control treatment. The histological assessment showed a favourable bone regeneration efficacy of the CS/HAp/P28 compared to the CS/HAp/BMP-2 treatment, thus showing the use of CS/HAp scaffolds with P28 as a promising osteoinductive scaffold for bone healing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖/羟基磷灰石P28支架在骨愈合中的应用前景
尽管骨具有固有的愈合能力,但较大的骨缺损仍然是临床关注的主要问题。本研究提出了一种结合壳聚糖/羟基磷灰石(CS/HAp)支架的现成治疗方法,通过UV交联过程与骨形态发生蛋白-2 (BMP-2)或其相关肽P28共价连接。虽然据报道,共价结合生长因子是传统物理吸附和包封方法的一个很好的替代方法,但这种方法存在改变生长因子分子活性和相互作用的风险。因此,我们对碱性磷酸酶(ALP)活性和茜素红染色(ARS)进行了定量十六烷基氯化吡啶(CPC)测定,以验证我们的光交联制备方法不会干扰生长因子的功能。两周后C2C12与100µg/mL P28的ALP活性与0.5µg/mL BMP-2相当,两种处理的ALP活性均为0.001 U/mL。CS/HAp/BMP-2和CS/HAp/P28支架培养的C2C12与阴性对照相比,ALP活性也有所提高。在0.3µg/mL BMP-2和50µg/mL P28时,ARS- cpc实验的光密度最高,而在CS/HAp/BMP-2和CS/HAp/P28支架培养的C2C12中,ARS的光强度最高。然后通过大鼠股骨髁缺损模型研究了该递送系统的骨传导能力,与胶原海绵对照处理相比,所有CS/HAp支架的新骨矿物质密度和骨体积都有所增加。组织学评估显示,CS/HAp/P28与CS/HAp/BMP-2相比,具有良好的骨再生效果,因此,CS/HAp支架与P28的应用是一种很有前景的骨诱导支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
期刊最新文献
Study on desorption mechanism and thermal stability of OTS coating as an anti-relaxation material Catalytic oxidation of CO over CuO@TiO2 catalyst: The relationship between activity and adsorption performance Anticancer effect of surface functionalized nano titanium dioxide with 5-fluorouracil on oral cancer cell line—An in vitro study Green synthesis of cerium oxide nanoparticles via Linum usitatissimum seeds extract and assessment of its biological effects Graphene nanoribbon FET technology-based OTA for optimizing fast and energy-efficient electronics for IoT application: Next-generation circuit design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1