Survei Penggunaan Tensorflow pada Machine Learning untuk Identifikasi Ikan Kawasan Lahan Basah

Nuruddin Wiranda, Harja Santana Purba, R. Sukmawati
{"title":"Survei Penggunaan Tensorflow pada Machine Learning untuk Identifikasi Ikan Kawasan Lahan Basah","authors":"Nuruddin Wiranda, Harja Santana Purba, R. Sukmawati","doi":"10.22146/IJEIS.58315","DOIUrl":null,"url":null,"abstract":"Wetlands are habitats commonly used for fish cultivation. South Kalimantan is one of the provinces that has a wetland area, which is 11,707,400ha, there are 67 rivers and an estimated 200 species of fish. This shows the abundant wealth of fish treasures and economic value. The study of fish identification is an important subject for the preservation of wetland fish. In the field of artificial intelligence, identification can be done using Machine Learning (ML). There are many libraries, a collection of functions that can be used in ML development, one of which is Tensorflow. In this paper, we survey a variety of literature on the use of Tensorflow, as well as datasets, algorithms, and methods that can be used in developing wetland area fish image identification applications. The results of the literature survey show that Tensorflow can be used for the development of fish character identification applications. There are many datasets that can be used such as MNIST, Oxford-I7, Oxford-102, LHI-Animal-Faces, Taiwan marine fish, KTH-Animal, NASNet, ResNet, and MobileNet. Classification methods that can be used to classify fish images include CNN, R-CNN, DCNN, Fast R-CNN, kNN, PNN, Faster R-CNN, SVM, LR, RF, PCA and KFA. Tensorflow provides many models that can be used for image classification, including Inception-v3 and MobileNets, and supports models such as CNN, RNN, RBM, and DBN. To speed up the classification process, image dimensions can be reduced using the MDS, LLE, Isomap, and SE algorithms.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":"51 1","pages":"179-188"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.58315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wetlands are habitats commonly used for fish cultivation. South Kalimantan is one of the provinces that has a wetland area, which is 11,707,400ha, there are 67 rivers and an estimated 200 species of fish. This shows the abundant wealth of fish treasures and economic value. The study of fish identification is an important subject for the preservation of wetland fish. In the field of artificial intelligence, identification can be done using Machine Learning (ML). There are many libraries, a collection of functions that can be used in ML development, one of which is Tensorflow. In this paper, we survey a variety of literature on the use of Tensorflow, as well as datasets, algorithms, and methods that can be used in developing wetland area fish image identification applications. The results of the literature survey show that Tensorflow can be used for the development of fish character identification applications. There are many datasets that can be used such as MNIST, Oxford-I7, Oxford-102, LHI-Animal-Faces, Taiwan marine fish, KTH-Animal, NASNet, ResNet, and MobileNet. Classification methods that can be used to classify fish images include CNN, R-CNN, DCNN, Fast R-CNN, kNN, PNN, Faster R-CNN, SVM, LR, RF, PCA and KFA. Tensorflow provides many models that can be used for image classification, including Inception-v3 and MobileNets, and supports models such as CNN, RNN, RBM, and DBN. To speed up the classification process, image dimensions can be reduced using the MDS, LLE, Isomap, and SE algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湿地是通常用于养鱼的栖息地。南加里曼丹是拥有湿地地区的省份之一,面积为11,707,400公顷,有67条河流,估计有200种鱼类。由此可见鱼宝的丰富财富和经济价值。鱼类鉴定研究是湿地鱼类保护的重要课题。在人工智能领域,识别可以使用机器学习(ML)来完成。有许多库,可以在ML开发中使用的函数集合,其中之一是Tensorflow。在本文中,我们调查了关于使用Tensorflow的各种文献,以及可用于开发湿地鱼类图像识别应用的数据集,算法和方法。文献调查结果表明,Tensorflow可以用于鱼类特征识别应用的开发。可以使用的数据集有MNIST、Oxford-I7、Oxford-102、LHI-Animal-Faces、台湾海鱼、KTH-Animal、NASNet、ResNet、MobileNet等。可用于鱼类图像分类的分类方法有CNN、R-CNN、DCNN、Fast R-CNN、kNN、PNN、Faster R-CNN、SVM、LR、RF、PCA和KFA。Tensorflow提供了许多可用于图像分类的模型,包括Inception-v3和MobileNets,并支持CNN、RNN、RBM和DBN等模型。为了加快分类过程,可以使用MDS、LLE、Isomap和SE算法降低图像尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Utilization of Sensor technology as a Sport Technology Innovation in Athlete Performance Measurement: Research Trends Pemilah Jenis Daun Mangga Melalui Deteksi RGB Menggunakan Sistem Pengolahan Citra Sistem Pengering Daun Kelor Berbasis Internet of Things dan Artificial Intteligence Penghematan Daya Pada Sensor Node Sistem Monitoring Kualitas Udara Design and Build Hydroponic Installations and Applications Using IoT-Based Multisensors with Solar Panel Electrical Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1