Optimal Data-Dependent Hashing for Approximate Near Neighbors

Alexandr Andoni, Ilya P. Razenshteyn
{"title":"Optimal Data-Dependent Hashing for Approximate Near Neighbors","authors":"Alexandr Andoni, Ilya P. Razenshteyn","doi":"10.1145/2746539.2746553","DOIUrl":null,"url":null,"abstract":"We show an optimal data-dependent hashing scheme for the approximate near neighbor problem. For an n-point dataset in a d-dimensional space our data structure achieves query time O(d ⋅ nρ+o(1)) and space O(n1+ρ+o(1) + d ⋅ n), where ρ=1/(2c2-1) for the Euclidean space and approximation c>1. For the Hamming space, we obtain an exponent of ρ=1/(2c-1). Our result completes the direction set forth in (Andoni, Indyk, Nguyen, Razenshteyn 2014) who gave a proof-of-concept that data-dependent hashing can outperform classic Locality Sensitive Hashing (LSH). In contrast to (Andoni, Indyk, Nguyen, Razenshteyn 2014), the new bound is not only optimal, but in fact improves over the best (optimal) LSH data structures (Indyk, Motwani 1998) (Andoni, Indyk 2006) for all approximation factors c>1. From the technical perspective, we proceed by decomposing an arbitrary dataset into several subsets that are, in a certain sense, pseudo-random.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"263","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 263

Abstract

We show an optimal data-dependent hashing scheme for the approximate near neighbor problem. For an n-point dataset in a d-dimensional space our data structure achieves query time O(d ⋅ nρ+o(1)) and space O(n1+ρ+o(1) + d ⋅ n), where ρ=1/(2c2-1) for the Euclidean space and approximation c>1. For the Hamming space, we obtain an exponent of ρ=1/(2c-1). Our result completes the direction set forth in (Andoni, Indyk, Nguyen, Razenshteyn 2014) who gave a proof-of-concept that data-dependent hashing can outperform classic Locality Sensitive Hashing (LSH). In contrast to (Andoni, Indyk, Nguyen, Razenshteyn 2014), the new bound is not only optimal, but in fact improves over the best (optimal) LSH data structures (Indyk, Motwani 1998) (Andoni, Indyk 2006) for all approximation factors c>1. From the technical perspective, we proceed by decomposing an arbitrary dataset into several subsets that are, in a certain sense, pseudo-random.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似近邻的最优数据相关哈希
我们给出了近似近邻问题的最优数据相关哈希方案。对于d维空间中的n点数据集,我们的数据结构实现了查询时间O(d·nρ+ O(1))和空间O(n1+ρ+ O(1) + d·n),其中ρ=1/(2c2-1)对于欧几里得空间和近似c>1。对于Hamming空间,我们得到ρ=1/(2c-1)的指数。我们的结果完成了(Andoni, Indyk, Nguyen, Razenshteyn 2014)中提出的方向,他们给出了一个概念证明,即数据依赖哈希可以优于经典的位置敏感哈希(LSH)。与(Andoni, Indyk, Nguyen, Razenshteyn 2014)相比,新边界不仅是最优的,而且实际上对所有近似因子c bbb10 1都优于最佳(最优)LSH数据结构(Indyk, Motwani 1998) (Andoni, Indyk 2006)。从技术角度来看,我们将任意数据集分解为几个子集,这些子集在某种意义上是伪随机的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Parallel Complexity Graphs and Memory-Hard Functions Lp Row Sampling by Lewis Weights Approximate Distance Oracles with Improved Bounds Proceedings of the forty-seventh annual ACM symposium on Theory of Computing Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1