{"title":"Generating informative paths for persistent sensing in unknown environments","authors":"D. Soltero, M. Schwager, D. Rus","doi":"10.1109/IROS.2012.6385730","DOIUrl":null,"url":null,"abstract":"We present an online algorithm for a robot to shape its path to a locally optimal configuration for collecting information in an unknown dynamic environment. As the robot travels along its path, it identifies both where the environment is changing, and how fast it is changing. The algorithm then morphs the robot's path online to concentrate on the dynamic areas in the environment in proportion to their rate of change. A Lyapunov-like stability proof is used to show that, under our proposed path shaping algorithm, the path converges to a locally optimal configuration according to a Voronoi-based coverage criterion. The path shaping algorithm is then combined with a previously introduced speed controller to produce guaranteed persistent monitoring trajectories for a robot in an unknown dynamic environment. Simulation and experimental results with a quadrotor robot support the proposed approach.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"46 1","pages":"2172-2179"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
We present an online algorithm for a robot to shape its path to a locally optimal configuration for collecting information in an unknown dynamic environment. As the robot travels along its path, it identifies both where the environment is changing, and how fast it is changing. The algorithm then morphs the robot's path online to concentrate on the dynamic areas in the environment in proportion to their rate of change. A Lyapunov-like stability proof is used to show that, under our proposed path shaping algorithm, the path converges to a locally optimal configuration according to a Voronoi-based coverage criterion. The path shaping algorithm is then combined with a previously introduced speed controller to produce guaranteed persistent monitoring trajectories for a robot in an unknown dynamic environment. Simulation and experimental results with a quadrotor robot support the proposed approach.