sensobol: An R Package to Compute Variance-Based Sensitivity Indices

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2021-01-22 DOI:10.18637/jss.v102.i05
A. Puy, S. L. Piano, Andrea Saltelli, S. Levin
{"title":"sensobol: An R Package to Compute Variance-Based Sensitivity Indices","authors":"A. Puy, S. L. Piano, Andrea Saltelli, S. Levin","doi":"10.18637/jss.v102.i05","DOIUrl":null,"url":null,"abstract":"The R package\"sensobol\"provides several functions to conduct variance-based uncertainty and sensitivity analysis, from the estimation of sensitivity indices to the visual representation of the results. It implements several state-of-the-art first and total-order estimators and allows the computation of up to third-order effects, as well as of the approximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate for models with either a scalar or a multivariate output. We illustrate its functionality by conducting a variance-based sensitivity analysis of three classic models: the Sobol' (1998) G function, the logistic population growth model of Verhulst (1845), and the spruce budworm and forest model of Ludwig, Jones and Holling (1976).","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"15 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v102.i05","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 30

Abstract

The R package"sensobol"provides several functions to conduct variance-based uncertainty and sensitivity analysis, from the estimation of sensitivity indices to the visual representation of the results. It implements several state-of-the-art first and total-order estimators and allows the computation of up to third-order effects, as well as of the approximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate for models with either a scalar or a multivariate output. We illustrate its functionality by conducting a variance-based sensitivity analysis of three classic models: the Sobol' (1998) G function, the logistic population growth model of Verhulst (1845), and the spruce budworm and forest model of Ludwig, Jones and Holling (1976).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sensobol:一个计算基于方差的灵敏度指数的R包
R软件包“sensobol”提供了几个函数来进行基于方差的不确定性和敏感性分析,从敏感性指标的估计到结果的可视化表示。它实现了几个最先进的一阶和全阶估计器,并允许以一种快速和用户友好的方式计算高达三阶的效应,以及近似误差。它的灵活性使得它也适用于具有标量输出或多变量输出的模型。我们通过对三个经典模型(Sobol' (1998) G函数、Verhulst(1845)的logistic种群增长模型以及Ludwig、Jones和Holling(1976)的云杉budworm和森林模型)进行基于方差的敏感性分析来说明其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1