A. Anisimova, P. Rubtsov, K. A. Akulich, S. Dmitriev, E. Frolova, A. Tiulpakov
{"title":"Late Diagnosis of POMC Deficiency and In Vitro Evidence of Residual Translation From Allele With c.-11C>A Mutation","authors":"A. Anisimova, P. Rubtsov, K. A. Akulich, S. Dmitriev, E. Frolova, A. Tiulpakov","doi":"10.1210/jc.2016-3318","DOIUrl":null,"url":null,"abstract":"Context: Loss-of-function mutations in the POMC gene are associated with a syndrome with the characteristics of adrenal insufficiency, obesity, and red hair. We describe here a case of pro-opiomelanocortin (POMC) deficiency in which adrenal insufficiency was not treated until the fourth year of life. One of the disease-causative POMC mutations was characterized in vitro using a unique approach. Case Description: A boy presented in the first year of life with red hair, growth acceleration, moderate obesity, and recurrent cholestasis, which was followed by 2 episodes of hypoglycemia at the ages of 1.5 and 3 years. The diagnosis was suspected at the age of 3.6 years after documentation of undetectable levels of plasma adrenocorticotropic hormone and serum cortisol, after which replacement with hydrocortisone was initiated. Sequencing of the POMC gene revealed compound heterozygosity for c.-11C>A/p.W84X mutations. The p.W84X mutation is predicted to result in a marked truncation of preprohormone. Using a messenger RNA transfection approach followed by an in vitro translation assay, we could directly demonstrate that the transcript with c.-11C>A substitution is predominantly translated within a new open reading frame; however, translation of the POMC main reading frame is preserved, with translation efficiency being ∼17% of the wild-type transcript. Conclusions: The current report provides important information on the natural course of POMC deficiency. In vitro translation studies demonstrated residual translation of the main coding region from an allele with the c.-11C>A mutation, which at least partially explains a relatively late presentation of adrenal insufficiency in the patient.","PeriodicalId":22632,"journal":{"name":"The Journal of Clinical Endocrinology & Metabolism","volume":"2 1","pages":"359–362"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/jc.2016-3318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Context: Loss-of-function mutations in the POMC gene are associated with a syndrome with the characteristics of adrenal insufficiency, obesity, and red hair. We describe here a case of pro-opiomelanocortin (POMC) deficiency in which adrenal insufficiency was not treated until the fourth year of life. One of the disease-causative POMC mutations was characterized in vitro using a unique approach. Case Description: A boy presented in the first year of life with red hair, growth acceleration, moderate obesity, and recurrent cholestasis, which was followed by 2 episodes of hypoglycemia at the ages of 1.5 and 3 years. The diagnosis was suspected at the age of 3.6 years after documentation of undetectable levels of plasma adrenocorticotropic hormone and serum cortisol, after which replacement with hydrocortisone was initiated. Sequencing of the POMC gene revealed compound heterozygosity for c.-11C>A/p.W84X mutations. The p.W84X mutation is predicted to result in a marked truncation of preprohormone. Using a messenger RNA transfection approach followed by an in vitro translation assay, we could directly demonstrate that the transcript with c.-11C>A substitution is predominantly translated within a new open reading frame; however, translation of the POMC main reading frame is preserved, with translation efficiency being ∼17% of the wild-type transcript. Conclusions: The current report provides important information on the natural course of POMC deficiency. In vitro translation studies demonstrated residual translation of the main coding region from an allele with the c.-11C>A mutation, which at least partially explains a relatively late presentation of adrenal insufficiency in the patient.