Fixed effect estimation of large T panel data models

Iv'an Fern'andez-Val, M. Weidner
{"title":"Fixed effect estimation of large T panel data models","authors":"Iv'an Fern'andez-Val, M. Weidner","doi":"10.1920/WP.CEM.2018.2218","DOIUrl":null,"url":null,"abstract":"This article reviews recent advances in fi xed effect estimation of panel data models for long panels, where the number of time periods is relatively large. We focus on semiparametric models with unobserved individual and time effects, where the distribution of the outcome variable conditional on covariates and unobserved effects is specifi ed parametrically, while the distribution of the unobserved effects is left unrestricted. Compared to existing reviews on long panels (Arellano & Hahn, 2007; a section in Arellano & Bonhomme, 2011) we discuss models with both individual and time effects, split-panel Jackknife bias corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main focus, and the unifying theme is that the order of this bias is given by the simple formula p=n for all models discussed, with p the number of estimated parameters and n the total sample size.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2018.2218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This article reviews recent advances in fi xed effect estimation of panel data models for long panels, where the number of time periods is relatively large. We focus on semiparametric models with unobserved individual and time effects, where the distribution of the outcome variable conditional on covariates and unobserved effects is specifi ed parametrically, while the distribution of the unobserved effects is left unrestricted. Compared to existing reviews on long panels (Arellano & Hahn, 2007; a section in Arellano & Bonhomme, 2011) we discuss models with both individual and time effects, split-panel Jackknife bias corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main focus, and the unifying theme is that the order of this bias is given by the simple formula p=n for all models discussed, with p the number of estimated parameters and n the total sample size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大T面板数据模型的固定效应估计
本文回顾了长期面板数据模型固定效应估计的最新进展,其中时间周期的数量相对较大。我们关注具有未观察到的个体效应和时间效应的半参数模型,其中结果变量的分布取决于协变量和未观察到的效应,而未观察到的效应的分布是不受限制的。与现有的长面板评论相比(Arellano & Hahn, 2007;(见Arellano & Bonhomme, 2011年的章节),我们讨论了具有个体和时间效应、面板分裂Jackknife偏差校正、不平衡面板、分布和分位数效应以及其他扩展的模型。理解和纠正由许多固定效应的估计引起的偶然参数偏差是我们的主要重点,统一的主题是这种偏差的顺序由所讨论的所有模型的简单公式p=n给出,其中p为估计参数的数量,n为总样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Macroeconomic Variations after Covid-19 Estimation and Inference by Stochastic Optimization: Three Examples Testable implications of multiple equilibria in discrete games with correlated types Gaussian transforms modeling and the estimation of distributional regression functions Simple misspecification adaptive inference for interval identified parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1