AyurLeaf: A Deep Learning Approach for Classification of Medicinal Plants

Q2 Arts and Humanities Platonic Investigations Pub Date : 2019-10-01 DOI:10.1109/TENCON.2019.8929394
M. Dileep, P. Pournami
{"title":"AyurLeaf: A Deep Learning Approach for Classification of Medicinal Plants","authors":"M. Dileep, P. Pournami","doi":"10.1109/TENCON.2019.8929394","DOIUrl":null,"url":null,"abstract":"Ayurvedic medicines have a vital role in preserving physical and mental health of human beings. Identification and classification of medicinal plants are essential for better treatment. Lack of experts in this field makes proper identification and classification of medicinal plants a tedious task. Hence, a fully automated system for medicinal plant classification is highly desirable. This work proposes AyurLeaf, a Deep Learning based Convolutional Neural Network (CNN) model, to classify medicinal plants using leaf features such as shape, size, color, texture etc. This research work also proposes a standard dataset for medicinal plants, commonly seen in various regions of Kerala, the state on southwestern coast of India. The proposed dataset contains leaf samples from 40 medicinal plants. A deep neural network inspired from Alexnet is utilised for the efficient feature extraction from the dataset. Finally, the classification is performed using Softmax and SVM classifiers. Our model, upon 5-cross validation, achieved a classification accuracy of 96.76% on AyurLeaf dataset. AyurLeaf helps us to preserve the traditional medicinal knowledge carried by our ancestors and provides an easy way to identify and classify medicinal plants.","PeriodicalId":36690,"journal":{"name":"Platonic Investigations","volume":"40 1","pages":"321-325"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platonic Investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2019.8929394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 33

Abstract

Ayurvedic medicines have a vital role in preserving physical and mental health of human beings. Identification and classification of medicinal plants are essential for better treatment. Lack of experts in this field makes proper identification and classification of medicinal plants a tedious task. Hence, a fully automated system for medicinal plant classification is highly desirable. This work proposes AyurLeaf, a Deep Learning based Convolutional Neural Network (CNN) model, to classify medicinal plants using leaf features such as shape, size, color, texture etc. This research work also proposes a standard dataset for medicinal plants, commonly seen in various regions of Kerala, the state on southwestern coast of India. The proposed dataset contains leaf samples from 40 medicinal plants. A deep neural network inspired from Alexnet is utilised for the efficient feature extraction from the dataset. Finally, the classification is performed using Softmax and SVM classifiers. Our model, upon 5-cross validation, achieved a classification accuracy of 96.76% on AyurLeaf dataset. AyurLeaf helps us to preserve the traditional medicinal knowledge carried by our ancestors and provides an easy way to identify and classify medicinal plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AyurLeaf:一种药用植物分类的深度学习方法
阿育吠陀药物在保持人类身心健康方面起着至关重要的作用。药用植物的鉴定和分类对更好的治疗至关重要。由于缺乏这方面的专家,对药用植物进行正确的鉴定和分类是一项繁琐的工作。因此,一个完全自动化的药用植物分类系统是非常需要的。本文提出了基于深度学习的卷积神经网络(CNN)模型AyurLeaf,利用叶子的形状、大小、颜色、纹理等特征对药用植物进行分类。这项研究工作还提出了药用植物的标准数据集,这些植物常见于印度西南海岸喀拉拉邦的各个地区。该数据集包含40种药用植物的叶子样本。从Alexnet中获得灵感的深度神经网络被用于有效地从数据集中提取特征。最后,使用Softmax和SVM分类器进行分类。经过5次交叉验证,该模型在AyurLeaf数据集上的分类准确率达到96.76%。AyurLeaf帮助我们保存了祖先携带的传统医学知识,并提供了一种简单的方法来识别和分类药用植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Platonic Investigations
Platonic Investigations Arts and Humanities-Philosophy
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Comparative Study of Lycopene Encapsulation Efficiency in Polycapprolactone Vs Poly Lactic Co-glycolic Acid A 2D Stick Model for Simulation of Sow walking Economic Analysis of Battery (NMC) Cathode Material Production in Flame Spray Process with Sustainable Solvents Slow Fashion: Ethics and Sustainability in the Fashion Batik Industry Decisions to Stay or Leave an Abusive Relationship: A Case Study Research of Dating Violence in Salatiga, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1