[The effect of Ca2+ on the properties of the large conductance cation channels of the nuclear envelope of the cerebellar neurons].

O. V. Lun'ko, O. Fedorenko, S. Marchenko
{"title":"[The effect of Ca2+ on the properties of the large conductance cation channels of the nuclear envelope of the cerebellar neurons].","authors":"O. V. Lun'ko, O. Fedorenko, S. Marchenko","doi":"10.1615/INTJPHYSPATHOPHYS.V5.I3.20","DOIUrl":null,"url":null,"abstract":"Previously we have found the large conductance cation channels (LCCC) in the nuclear membranes, where inositol-1,4,5-triphosphate receptors (IP3Rs) were also observed. Probably IP3Rs and LCCC are functionally connected: LCCC may provide the counterflow of K+, which prevent the formation of the negative potential in the lumen of the nuclear envelope and in such way may prolong the Ca2+ releasing by IP3Rs. LCCC are poorly studied and their molecular nature is still unknown. We investigated the effect of Ca2+ on properties of these channels. Our results demonstrated the main biophysical properties of LCCC changed significantly neither in Ca(2+)-free solution, nor with high concentrations of Ca2+ in the nuclear lumen. So, the level of Ca2+ repletion of the store does not influence the activity of LCCC.","PeriodicalId":12306,"journal":{"name":"Fiziolohichnyi zhurnal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiziolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/INTJPHYSPATHOPHYS.V5.I3.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Previously we have found the large conductance cation channels (LCCC) in the nuclear membranes, where inositol-1,4,5-triphosphate receptors (IP3Rs) were also observed. Probably IP3Rs and LCCC are functionally connected: LCCC may provide the counterflow of K+, which prevent the formation of the negative potential in the lumen of the nuclear envelope and in such way may prolong the Ca2+ releasing by IP3Rs. LCCC are poorly studied and their molecular nature is still unknown. We investigated the effect of Ca2+ on properties of these channels. Our results demonstrated the main biophysical properties of LCCC changed significantly neither in Ca(2+)-free solution, nor with high concentrations of Ca2+ in the nuclear lumen. So, the level of Ca2+ repletion of the store does not influence the activity of LCCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Ca2+对小脑神经元核膜大电导阳离子通道性质的影响]。
我们已经在核膜上发现了大电导阳离子通道(LCCC),其中也观察到肌醇-1,4,5-三磷酸受体(IP3Rs)。IP3Rs和LCCC可能在功能上有联系:LCCC可能提供K+的逆流,阻止了核膜腔内负电位的形成,从而延长了IP3Rs释放Ca2+的时间。LCCC的研究很少,其分子性质仍然未知。我们研究了Ca2+对这些通道性质的影响。我们的研究结果表明,LCCC的主要生物物理特性在无Ca(2+)溶液和核腔高浓度Ca2+中都没有显著变化。因此,储存库Ca2+的富集水平不影响LCCC的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COMPARISON OF SPECTROSCOPIC PROPERTIES OF INTRAOCULAR FLUID IN PATIENTS WITH CATARACT AND PRIMARY OPEN-ANGLE GLAUCOMA. Experimental therapy of graft-versus-host disease by mesenchymal stromal cells grown on oxide nanocoatings. THE EFFECT OF GADOLINIUM ORTHOVANADATE NANOPARTICLES BY NEONATAL INDUCED REPRODUCTIVE DISEASE IN MALE RATS. Role of matrix metalloproteinase 9 and its tissue inhibitor 1 in development and prognosis of diabetic retinopathy. SPECIFIC FEATURES OF CHRONORHYTH- MOLOGIC CHANGES OF THE ION-REGU- LATING FUNCTION OF THE KIDNEYS UN- DER THE HYPOFUNCTION OF THE PINEAL GLAND.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1