Evolution and Application of Sealing Ability of Gypsum Caprocks under Temperature-Pressure Coupling: An Example of the ZS5 Well in the Tazhong Area of the Tarim Basin

IF 3.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Acta Geologica Sinica ‐ English Edition Pub Date : 2023-08-22 DOI:10.1111/1755-6724.15107
Hua LIU, Shan ZHAO, Xianzhang YANG, Yongfeng ZHU, Shen WANG, Ke ZHANG
{"title":"Evolution and Application of Sealing Ability of Gypsum Caprocks under Temperature-Pressure Coupling: An Example of the ZS5 Well in the Tazhong Area of the Tarim Basin","authors":"Hua LIU,&nbsp;Shan ZHAO,&nbsp;Xianzhang YANG,&nbsp;Yongfeng ZHU,&nbsp;Shen WANG,&nbsp;Ke ZHANG","doi":"10.1111/1755-6724.15107","DOIUrl":null,"url":null,"abstract":"<p>Gypsum caprocks' sealing ability is affected by temperature-pressure coupling. Due to the limitations of experimental conditions, there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions, which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling. Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperature-pressure action and isothermal-variable pressure action on the basis of sample feasibility analysis. According to research, the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions, and it becomes more ductile. This reduces the amount of time it takes for the rock to transition from brittle to plastic. When temperature is taken into account, both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower, and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization. The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well #ZS5 are compared. This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.</p>","PeriodicalId":7095,"journal":{"name":"Acta Geologica Sinica ‐ English Edition","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Sinica ‐ English Edition","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.15107","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gypsum caprocks' sealing ability is affected by temperature-pressure coupling. Due to the limitations of experimental conditions, there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions, which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling. Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperature-pressure action and isothermal-variable pressure action on the basis of sample feasibility analysis. According to research, the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions, and it becomes more ductile. This reduces the amount of time it takes for the rock to transition from brittle to plastic. When temperature is taken into account, both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower, and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization. The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well #ZS5 are compared. This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度-压力耦合作用下石膏毛岩封隔能力的演化及其应用:以塔里木盆地塔中地区 ZS5 井为例
石膏毛石的密封能力受温度-压力耦合的影响。由于实验条件的限制,目前还缺乏同时考虑温度和压力条件变化的三轴应力应变实验,限制了利用温压耦合综合评价石膏岩脆塑演化和封堵能力的准确性。在样品可行性分析的基础上,利用三轴应力-应变试验研究了石膏岩在温度-压力耦合作用和等温-变压作用下封堵能力演化的差异。研究表明,与等温加压实验条件相比,在温度和压力同时升高的情况下,石膏岩的峰值强度和残余强度降低,韧性增强。这缩短了岩石从脆性转变为塑性所需的时间。如果考虑温度因素,石膏岩的脆塑转变深度极限和岩性转变都会变浅,变温变压条件下石膏岩的演化比等温加压条件下更为复杂。对比 ZS5 号井的应用结果,温压耦合条件下的密封能力更符合实际地质情况。这为精确确定碳氢化合物的积累过程提供了理论依据,并解释了早期碳氢化合物没有得到很好保存的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geologica Sinica ‐ English Edition
Acta Geologica Sinica ‐ English Edition 地学-地球科学综合
CiteScore
3.00
自引率
12.10%
发文量
3039
审稿时长
6 months
期刊介绍: Acta Geologica Sinica mainly reports the latest and most important achievements in the theoretical and basic research in geological sciences, together with new technologies, in China. Papers published involve various aspects of research concerning geosciences and related disciplines, such as stratigraphy, palaeontology, origin and history of the Earth, structural geology, tectonics, mineralogy, petrology, geochemistry, geophysics, geology of mineral deposits, hydrogeology, engineering geology, environmental geology, regional geology and new theories and technologies of geological exploration.
期刊最新文献
Effects of Intracratonic Strike-slip Fault on the Differentiation of Carbonate Microfacies: A Case Study of a Permian Platform Margin in the Sichuan Basin (SW China) A Novel Three-stage Tectonic Model for Mississippi Valley-type Zn-Pb Deposits in Orogenic Fold-and-Thrust Belts Kuedinskie Kluchiki, a Unique Middle Permian Biota Locality as a Key-point for Reconstruction of Late Paleozoic Terrestrial Ecosystems of the Urals, Russia Provenance and Paleoclimate of the Triassic to Middle Jurassic Adigrat Sandstone, Blue Nile Basin, Central Ethiopia Changes in Calcareous Nannofossil Assemblages and Paleoenvironmental Interpretation of the Early Miocene Lice Formation, Kahramanmaraş Basin, Turkey, East Mediterranean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1