{"title":"Algebraic Central Limit Theorems: A Personal View on One of Wilhelm's Legacies","authors":"Michael Skeide","doi":"10.1142/s0219025722500138","DOIUrl":null,"url":null,"abstract":"Bringing forward the concept of convergence in moments from classical random variables to quantum random variables is what leads to what can be called algebraic central limit theorem for (classical and) quantum random variables. I reflect in a very personal way how such an idea is typical for the spirit of doing research in mathematics as I learned it in Wilhelm von Waldenfels’s research group in Heidelberg.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Bringing forward the concept of convergence in moments from classical random variables to quantum random variables is what leads to what can be called algebraic central limit theorem for (classical and) quantum random variables. I reflect in a very personal way how such an idea is typical for the spirit of doing research in mathematics as I learned it in Wilhelm von Waldenfels’s research group in Heidelberg.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.