Implementation and Evaluation of Learning Classifiers in Detecting Parkinson's Disease Using Extensive Speech Parameters

M. E. Mital
{"title":"Implementation and Evaluation of Learning Classifiers in Detecting Parkinson's Disease Using Extensive Speech Parameters","authors":"M. E. Mital","doi":"10.1109/ICTS52701.2021.9608390","DOIUrl":null,"url":null,"abstract":"The adverse effects of neurodegenerative diseases are aimed to be reduced if not totally diminished. Parkinson's Disease (PD), a type of neurodegenerative disease, has been a trend in research and medicine with regards to its classification and early detection. There is a count on the symptoms experienced by PD patients such as tremors, rigidity, and slowness, but the majority of these patients have an impairment in speech; thus, considering voice attributes as an outstanding feature. Using extensive voice parameters including but not limited to Mel Frequency Cepstral Coefficients (MFCC) and Tunable Q-Factor Wavelet Transform (TQWT) based features, this study does not only focus on one learning machine - which is the usual subject of related literature, but on evaluating the generalization performance of 7 classification systems including their variants. This will provide a summative report on their accuracies so that researchers can proceed to higher levels of studies. As a result, the best learning classifier utilizing the data set acquired is optimized k-NN with 95.6% accuracy. This is achieved in a 10-fold cross-validation configuration.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"36 1","pages":"241-246"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adverse effects of neurodegenerative diseases are aimed to be reduced if not totally diminished. Parkinson's Disease (PD), a type of neurodegenerative disease, has been a trend in research and medicine with regards to its classification and early detection. There is a count on the symptoms experienced by PD patients such as tremors, rigidity, and slowness, but the majority of these patients have an impairment in speech; thus, considering voice attributes as an outstanding feature. Using extensive voice parameters including but not limited to Mel Frequency Cepstral Coefficients (MFCC) and Tunable Q-Factor Wavelet Transform (TQWT) based features, this study does not only focus on one learning machine - which is the usual subject of related literature, but on evaluating the generalization performance of 7 classification systems including their variants. This will provide a summative report on their accuracies so that researchers can proceed to higher levels of studies. As a result, the best learning classifier utilizing the data set acquired is optimized k-NN with 95.6% accuracy. This is achieved in a 10-fold cross-validation configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广泛语音参数的学习分类器在帕金森病检测中的实现与评价
神经退行性疾病的不良影响即使不能完全消除,也要减少。帕金森病(PD)是一种神经退行性疾病,其分类和早期检测已成为研究和医学的一个趋势。PD患者有一定的症状,如震颤、僵硬和行动迟缓,但大多数患者都有语言障碍;因此,考虑语音属性是一个突出的特征。使用广泛的语音参数,包括但不限于Mel频率倒谱系数(MFCC)和基于可调q因子小波变换(TQWT)的特征,本研究不仅关注一台学习机-这是相关文献的通常主题,而且还评估了7种分类系统及其变体的泛化性能。这将提供一份关于其准确性的总结性报告,以便研究人员可以进行更高水平的研究。因此,利用所获得的数据集优化的最佳学习分类器是k-NN,准确率为95.6%。这是在10倍交叉验证配置中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Outlier Detection and Decision Tree for Wireless Sensor Network Fault Diagnosis Graph Algorithm for Anomaly Prediction in East Java Student Admission System FarmEasy: An Intelligent Platform to Empower Crops Prediction and Crops Marketing Hiding Messages in Audio using Modulus Operation and Simple Partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1