Audio Feature Generation for Missing Modality Problem in Video Action Recognition

Hu-Cheng Lee, Chih-Yu Lin, P. Hsu, Winston H. Hsu
{"title":"Audio Feature Generation for Missing Modality Problem in Video Action Recognition","authors":"Hu-Cheng Lee, Chih-Yu Lin, P. Hsu, Winston H. Hsu","doi":"10.1109/ICASSP.2019.8682513","DOIUrl":null,"url":null,"abstract":"Despite the recent success of multi-modal action recognition in videos, in reality, we usually confront the situation that some data are not available beforehand, especially for multi-modal data. For example, while vision and audio data are required to address the multi-modal action recognition, audio tracks in videos are easily lost due to the broken files or the limitation of devices. To cope with this sound-missing problem, we present an approach to simulating deep audio feature from merely spatial-temporal vision data. We demonstrate that adding the simulating sound feature can significantly assist the multi-modal action recognition task. Evaluating our method on the Moments in Time (MIT) Dataset , we show that our proposed method performs favorably against the two-stream architecture, enabling a richer understanding of multi-modal action recognition in video.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"32 1","pages":"3956-3960"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Despite the recent success of multi-modal action recognition in videos, in reality, we usually confront the situation that some data are not available beforehand, especially for multi-modal data. For example, while vision and audio data are required to address the multi-modal action recognition, audio tracks in videos are easily lost due to the broken files or the limitation of devices. To cope with this sound-missing problem, we present an approach to simulating deep audio feature from merely spatial-temporal vision data. We demonstrate that adding the simulating sound feature can significantly assist the multi-modal action recognition task. Evaluating our method on the Moments in Time (MIT) Dataset , we show that our proposed method performs favorably against the two-stream architecture, enabling a richer understanding of multi-modal action recognition in video.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频动作识别中模态缺失问题的音频特征生成
尽管近年来视频中的多模态动作识别取得了成功,但在现实生活中,我们经常会遇到一些事先没有数据的情况,特别是对于多模态数据。例如,虽然需要视觉和音频数据来处理多模态动作识别,但视频中的音轨很容易由于文件损坏或设备的限制而丢失。为了解决这种声音缺失问题,我们提出了一种仅从时空视觉数据模拟深度音频特征的方法。我们证明了添加模拟声音特征可以显著地辅助多模态动作识别任务。在时间矩(MIT)数据集上评估我们的方法,我们表明我们提出的方法在两流架构下表现良好,能够更丰富地理解视频中的多模态动作识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1