Infinite probabilistic latent component analysis for audio source separation

Kazuyoshi Yoshii, Eita Nakamura, Katsutoshi Itoyama, Masataka Goto
{"title":"Infinite probabilistic latent component analysis for audio source separation","authors":"Kazuyoshi Yoshii, Eita Nakamura, Katsutoshi Itoyama, Masataka Goto","doi":"10.1109/MLSP.2017.8168189","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical method of audio source separation based on a nonparametric Bayesian extension of probabilistic latent component analysis (PLCA). A major approach to audio source separation is to use nonnegative matrix factorization (NMF) that approximates the magnitude spectrum of a mixture signal at each frame as the weighted sum of fewer source spectra. Another approach is to use PLCA that regards the magnitude spectrogram as a two-dimensional histogram of “sound quanta” and classifies each quantum into one of sources. While NMF has a physically-natural interpretation, PLCA has been used successfully for music signal analysis. To enable PLCA to estimate the number of sources, we propose Dirichlet process PLCA (DP-PLCA) and derive two kinds of learning methods based on variational Bayes and collapsed Gibbs sampling. Unlike existing learning methods for nonparametric Bayesian NMF based on the beta or gamma processes (BP-NMF and GaP-NMF), our sampling method can efficiently search for the optimal number of sources without truncating the number of sources to be considered. Experimental results showed that DP-PLCA is superior to GaP-NMF in terms of source number estimation.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a statistical method of audio source separation based on a nonparametric Bayesian extension of probabilistic latent component analysis (PLCA). A major approach to audio source separation is to use nonnegative matrix factorization (NMF) that approximates the magnitude spectrum of a mixture signal at each frame as the weighted sum of fewer source spectra. Another approach is to use PLCA that regards the magnitude spectrogram as a two-dimensional histogram of “sound quanta” and classifies each quantum into one of sources. While NMF has a physically-natural interpretation, PLCA has been used successfully for music signal analysis. To enable PLCA to estimate the number of sources, we propose Dirichlet process PLCA (DP-PLCA) and derive two kinds of learning methods based on variational Bayes and collapsed Gibbs sampling. Unlike existing learning methods for nonparametric Bayesian NMF based on the beta or gamma processes (BP-NMF and GaP-NMF), our sampling method can efficiently search for the optimal number of sources without truncating the number of sources to be considered. Experimental results showed that DP-PLCA is superior to GaP-NMF in terms of source number estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音频源分离的无限概率潜在分量分析
提出了一种基于概率潜分量分析的非参数贝叶斯扩展的音频源分离统计方法。音频源分离的主要方法是使用非负矩阵分解(NMF),该方法将混合信号在每帧处的幅度谱近似为较少源谱的加权和。另一种方法是使用PLCA,它将幅度谱图视为“声音量子”的二维直方图,并将每个量子分类为一个源。虽然NMF具有物理-自然解释,但PLCA已成功用于音乐信号分析。为了使PLCA能够估计源的数量,我们提出了Dirichlet过程PLCA (DP-PLCA),并推导了两种基于变分贝叶斯和崩溃吉布斯抽样的学习方法。与现有的基于beta或gamma过程(BP-NMF和GaP-NMF)的非参数贝叶斯NMF学习方法不同,我们的采样方法可以有效地搜索最优的源数量,而不会截断要考虑的源数量。实验结果表明,DP-PLCA算法在源数估计方面优于GaP-NMF算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1