Variable-energy write STT-RAM architecture with bit-wise write-completion monitoring

Tianhao Zheng, Jaeyoung Park, M. Orshansky, M. Erez
{"title":"Variable-energy write STT-RAM architecture with bit-wise write-completion monitoring","authors":"Tianhao Zheng, Jaeyoung Park, M. Orshansky, M. Erez","doi":"10.1109/ISLPED.2013.6629299","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate an energy-reduction strategy that relies on the stochastic long-tail nature of the STT-RAM write operation. To move away from the traditional worst-case approach, the per-cell write process is continuously monitored and is terminated as soon as each cell's state matches the written state. Since the average write duration is far shorter than the worst-case duration, the average write energy is significantly reduced by the proposed architecture. We developed a light-weight circuit for fast state change detection and bit-line shutdown and evaluated it using a compact STT-RAM model targeting an implementation in a 16nm technology node. Our analysis indicates that at the required write-error rate the proposed architecture reduces write energy by 87.3%∓99.5% depending on the write direction, and on average achieves 96.5% write energy saving in 16 SPEC CPU 2006 applications compared to conventional design. Compared to the best previously known architecture that exploits stochasticity (verify-on-write), we reduce write energy by approximately 6.5×.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2013.6629299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

In this paper we demonstrate an energy-reduction strategy that relies on the stochastic long-tail nature of the STT-RAM write operation. To move away from the traditional worst-case approach, the per-cell write process is continuously monitored and is terminated as soon as each cell's state matches the written state. Since the average write duration is far shorter than the worst-case duration, the average write energy is significantly reduced by the proposed architecture. We developed a light-weight circuit for fast state change detection and bit-line shutdown and evaluated it using a compact STT-RAM model targeting an implementation in a 16nm technology node. Our analysis indicates that at the required write-error rate the proposed architecture reduces write energy by 87.3%∓99.5% depending on the write direction, and on average achieves 96.5% write energy saving in 16 SPEC CPU 2006 applications compared to conventional design. Compared to the best previously known architecture that exploits stochasticity (verify-on-write), we reduce write energy by approximately 6.5×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变能量写入STT-RAM架构,具有按位写入完成监控
在本文中,我们展示了一种依赖于STT-RAM写操作的随机长尾特性的节能策略。为了摆脱传统的最坏情况方法,对每个单元的写入过程进行持续监控,并在每个单元的状态与写入状态匹配时立即终止。由于平均写持续时间远短于最坏情况持续时间,因此所提出的体系结构显著降低了平均写能量。我们开发了一种用于快速状态变化检测和位线关闭的轻型电路,并使用紧凑型STT-RAM模型对其进行了评估,目标是在16nm技术节点上实现。我们的分析表明,在所需的写入错误率下,根据写入方向,所提出的架构可将写入能量降低87.3% - 99.5%,并且与传统设计相比,在16 SPEC CPU 2006应用程序中平均可实现96.5%的写入能量节省。与先前已知的利用随机性(写时验证)的最佳架构相比,我们将写入能量减少了大约6.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adiabatic and Clock-Powered Circuits Power Macro-Models for High-Level Power Estimation Stand-By Power Reduction for SRAM Memories Leakage in CMOS Nanometric Technologies Evolution of Deep Submicron Bulk and SOI Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1