On resonant vortex excitation of high-rise structures

A. Karakozova, V. Mondrus
{"title":"On resonant vortex excitation of high-rise structures","authors":"A. Karakozova, V. Mondrus","doi":"10.1063/5.0103589","DOIUrl":null,"url":null,"abstract":"Subject of the research: Today, the design of flexible, extended in length and height structures of transport, industry, communication is one of the important directions of construction development. Such structures include continuous extended metal constructions such as chimneys, poles, billboards, monuments, bridges, pipelines. Besides ensuring the limit states for strength and deformability, there is another important condition for the durable operation of metal structures which is the absence of aerodynamic instability phenomena (mainly wind resonance) during the whole service life. Objectives: Review of the background, analysis of accidents that have occurred, proposals to avoid such situations at the design stage and in the occurrence of emergency conditions at existing facilities. Materials and methods: Review and analysis of existing data and proposals for further improvement of calculation and design methods. Results: The paper analyzes the mechanisms of the main types of aerodynamic instability (wind resonance, flutter, galloping, oscillations in the airfoil) on different types of structures, presents particular cases of the history of famous unique constructions and the authors' calculation practice, describes the ways to avoid this type of phenomena in the design of new buildings or in emergency situations on existing structures. Conclusions: The phenomena described in the article are applicable to an extremely narrow area of construction and are often ignored in calculation and design. This article is intended to draw special attention to these phenomena not only for designers, but also for research engineers in order to create new mechanisms for their analysis.","PeriodicalId":7564,"journal":{"name":"AIP Conference Proceedings","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0103589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subject of the research: Today, the design of flexible, extended in length and height structures of transport, industry, communication is one of the important directions of construction development. Such structures include continuous extended metal constructions such as chimneys, poles, billboards, monuments, bridges, pipelines. Besides ensuring the limit states for strength and deformability, there is another important condition for the durable operation of metal structures which is the absence of aerodynamic instability phenomena (mainly wind resonance) during the whole service life. Objectives: Review of the background, analysis of accidents that have occurred, proposals to avoid such situations at the design stage and in the occurrence of emergency conditions at existing facilities. Materials and methods: Review and analysis of existing data and proposals for further improvement of calculation and design methods. Results: The paper analyzes the mechanisms of the main types of aerodynamic instability (wind resonance, flutter, galloping, oscillations in the airfoil) on different types of structures, presents particular cases of the history of famous unique constructions and the authors' calculation practice, describes the ways to avoid this type of phenomena in the design of new buildings or in emergency situations on existing structures. Conclusions: The phenomena described in the article are applicable to an extremely narrow area of construction and are often ignored in calculation and design. This article is intended to draw special attention to these phenomena not only for designers, but also for research engineers in order to create new mechanisms for their analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高层结构共振涡激励研究
研究课题:当今,设计灵活、长度和高度可扩展的交通、工业、通信结构是建筑发展的重要方向之一。这些结构包括连续延伸的金属结构,如烟囱、电线杆、广告牌、纪念碑、桥梁、管道。除了确保强度和可变形性的极限状态外,金属结构持久运行的另一个重要条件是在整个使用寿命期间没有空气动力不稳定现象(主要是风共振)。目的:审查背景,分析已经发生的事故,提出在设计阶段和在现有设施发生紧急情况时避免这种情况的建议。材料和方法:回顾和分析现有数据,并提出进一步改进计算和设计方法的建议。结果:分析了不同类型结构的主要气动失稳类型(风共振、颤振、驰动、翼型振荡)的机理,介绍了著名独特建筑的历史和作者的计算实践,阐述了在新建筑设计或现有结构的紧急情况下避免这类现象的方法。结论:文中所描述的现象适用于极其狭窄的施工区域,在计算和设计中往往被忽略。本文旨在引起设计师和研究工程师对这些现象的特别关注,以便为他们的分析创造新的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Fluid Focusing Contributes to the BM Vibration Amplification by Boosting the Pressure. Similar Tuning of Distortion-Product Otoacoustic Emission Ratio Functions and Cochlear Vibrations in Mice. The Shape of Noise to Come: Signal vs. Noise Amplification in the Active Cochlea. Does Endolymphatic Hydrops Shift the Cochlear Tonotopic Map? Whole Stimulus DPOAE Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1