{"title":"Impact of salinity and temperature variations on relative permeability and residual oil saturation in neutral-wet sandstone","authors":"W. Mahmud","doi":"10.46690/capi.2022.02.01","DOIUrl":null,"url":null,"abstract":": Low-salinity water flooding has become one of the major emerging enhanced oil recovery techniques where lower salinity water is flooded into a hydrocarbon reservoir in order to increase oil recovery. It’s been widely reported that reservoir wettability alteration from oil-wet to water-wet in a low-salinity water process improves oil recovery. Many factors control system wettability, however, role and intensity of each factor is not completely understood. Therefore, several reported affecting factors on wettability alteration were eliminated in the present work in order to determine the impact of different low-salinity water on oil and water relative permeability curves and residual oil saturation. A series of experiments were performed where three simulated brine solutions were injected into oil saturated thoroughly cleaned neutral-wet sandstone core plugs. The effect of injected brine temperature on oil and water relative permeability curves and residual oil saturation was also determined by injecting 115,000 ppm salinity brine at three different temperatures. Results indicate that decreasing flooded water salinity alters the wettability preference of the rock towards favorable water-wetting conditions. Water-wet conditions decrease water mobility and enhance oil mobilization leading to better oil microscopic displacement efficiency and reduced residual oil saturation. Elevated temperature reduces water relative permeability and residual oil saturation.","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/capi.2022.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3
Abstract
: Low-salinity water flooding has become one of the major emerging enhanced oil recovery techniques where lower salinity water is flooded into a hydrocarbon reservoir in order to increase oil recovery. It’s been widely reported that reservoir wettability alteration from oil-wet to water-wet in a low-salinity water process improves oil recovery. Many factors control system wettability, however, role and intensity of each factor is not completely understood. Therefore, several reported affecting factors on wettability alteration were eliminated in the present work in order to determine the impact of different low-salinity water on oil and water relative permeability curves and residual oil saturation. A series of experiments were performed where three simulated brine solutions were injected into oil saturated thoroughly cleaned neutral-wet sandstone core plugs. The effect of injected brine temperature on oil and water relative permeability curves and residual oil saturation was also determined by injecting 115,000 ppm salinity brine at three different temperatures. Results indicate that decreasing flooded water salinity alters the wettability preference of the rock towards favorable water-wetting conditions. Water-wet conditions decrease water mobility and enhance oil mobilization leading to better oil microscopic displacement efficiency and reduced residual oil saturation. Elevated temperature reduces water relative permeability and residual oil saturation.
CapillarityPhysics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍:
Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome.
The following topics are within (but not limited to) the scope of capillarity:
i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials
ii) Fundamental mechanisms of capillarity aided by theory and experiments
iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences
iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids
v) New approaches and technologies on capillarity
Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.