{"title":"Enhancing Maize Germplasm with Resistance to Aflatoxin Contamination","authors":"W. Williams, G. Windham, P. Buckley","doi":"10.1081/TXR-120024091","DOIUrl":null,"url":null,"abstract":"Preharvest kernel infection by Aspergillus flavus and the subsequent accumulation of aflatoxin in maize grain are chronic problems in the southeastern United States. Aflatoxin is a natural carcinogen, and its presence markedly reduces the value of grain. Losses to aflatoxin contamination reach devastating levels some years. Development and deployment of maize hybrids with resistance to aflatoxin contamination is generally considered the most feasible method of reducing or eliminating the problem. Research to address the aflatoxin problem was initiated by USDA–ARS at Mississippi State, MS, in the late 1970s. The goals of the research were to identify and develop aflatoxin‐resistant maize germplasm. First, reliable techniques for screening germplasm were developed. Then, germplasm from numerous sources was screened. The release of Mp313E in 1988 was the first release of maize germplasm with resistance to aflatoxin contamination. Two other germplasm lines, Mp420 and Mp715, were released in 1991 and 1999, respectively. Additional germplasm lines have been developed, but not yet released. Efforts are currently underway to identify other sources of resistance.When used in crosses with other lines, the aflatoxin‐resistant lines markedly reduce the level of aflatoxin contamination in the resulting hybrids. Analysis of a diallel cross indicated that general combining ability was a significant source of variation in the inheritance of resistance to aflatoxin contamination. Efforts to combine resistance to aflatoxin combination and agronomic qualities using both conventional breeding methods and molecular marker assisted selection have been initiated.","PeriodicalId":17561,"journal":{"name":"Journal of Toxicology-toxin Reviews","volume":"23 1","pages":"175 - 193"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology-toxin Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1081/TXR-120024091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Preharvest kernel infection by Aspergillus flavus and the subsequent accumulation of aflatoxin in maize grain are chronic problems in the southeastern United States. Aflatoxin is a natural carcinogen, and its presence markedly reduces the value of grain. Losses to aflatoxin contamination reach devastating levels some years. Development and deployment of maize hybrids with resistance to aflatoxin contamination is generally considered the most feasible method of reducing or eliminating the problem. Research to address the aflatoxin problem was initiated by USDA–ARS at Mississippi State, MS, in the late 1970s. The goals of the research were to identify and develop aflatoxin‐resistant maize germplasm. First, reliable techniques for screening germplasm were developed. Then, germplasm from numerous sources was screened. The release of Mp313E in 1988 was the first release of maize germplasm with resistance to aflatoxin contamination. Two other germplasm lines, Mp420 and Mp715, were released in 1991 and 1999, respectively. Additional germplasm lines have been developed, but not yet released. Efforts are currently underway to identify other sources of resistance.When used in crosses with other lines, the aflatoxin‐resistant lines markedly reduce the level of aflatoxin contamination in the resulting hybrids. Analysis of a diallel cross indicated that general combining ability was a significant source of variation in the inheritance of resistance to aflatoxin contamination. Efforts to combine resistance to aflatoxin combination and agronomic qualities using both conventional breeding methods and molecular marker assisted selection have been initiated.