Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration

D. Bowring, A. Bross, P. Lane, M. Leonova, A. Moretti, D. Neuffer, R. Pasquinelli, D. Peterson, M. Popovic, D. Stratakis, K. Yonehara, A. Kochemirovskiy, Y. Torun, C. Adolphsen, L. Ge, A. Haase, Z. Li, D. Martin, M. Chung, D. Li, T. Luo, B. Freemire, A. Liu, M. Palmer
{"title":"Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration","authors":"D. Bowring, A. Bross, P. Lane, M. Leonova, A. Moretti, D. Neuffer, R. Pasquinelli, D. Peterson, M. Popovic, D. Stratakis, K. Yonehara, A. Kochemirovskiy, Y. Torun, C. Adolphsen, L. Ge, A. Haase, Z. Li, D. Martin, M. Chung, D. Li, T. Luo, B. Freemire, A. Liu, M. Palmer","doi":"10.1103/physrevaccelbeams.23.072001","DOIUrl":null,"url":null,"abstract":"Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.23.072001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多特斯拉磁场中运行正常导电射频腔进行介子电离冷却:可行性论证
电离冷却是产生明亮介子光束的首选方法。这种冷却技术需要在直流电磁磁铁的多特斯拉场内运行正常的导电、射频(RF)加速腔。在这些条件下,腔体对射频击穿的敏感性增加,这可能会损坏通道元件并限制通道长度和传输效率。我们提出了一种解决强磁场击穿问题的方法。我们首次报道了在高于50 MV/m的梯度和3特斯拉的外磁场下稳定的高真空铜腔工作。这消除了以前在电离冷却通道设计中固有的重大技术风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a 50 MeV LPA-based Injector at ATHENA for a Compact Storage Ring An Upgrade Path for the Fermilab Accelerator Complex Machine Learning-Based Direct Solver for One-To-Many Problems on Temporal Shaping of Electron Beams Adaptive Deep Learning for Time-Varying Systems With Hidden Parameters: Predicting Changing Input Beam Distributions of Compact Particle Accelerators Comment on “Fast-slow mode coupling instability for coasting beams in the presence of detuning impedance”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1