К СТАЦИОНАРНОЙ ТЕОРИИ ЗАЖИГАНИЯ ГАЗОВ НАГРЕТЫМ ТЕЛОМ

А. А. Беляев, Б. С. Ермолаев
{"title":"К СТАЦИОНАРНОЙ ТЕОРИИ ЗАЖИГАНИЯ ГАЗОВ НАГРЕТЫМ ТЕЛОМ","authors":"А. А. Беляев, Б. С. Ермолаев","doi":"10.30826/ce22150301","DOIUrl":null,"url":null,"abstract":"Стационарная теория зажигания накаленной плоской поверхностью, сформулированная Я. Б. Зельдовичем в 1939 г., сыграла пионерскую роль в успешном развитии исследований по воспламенению различных горючих материалов. Аналитическое решение, полученное позднее для цилиндрической поверхности, открыло возможность для сравнения с экспериментальными данными. В работах, выполненных Филипповым с соавторами, было обнаружено расхождение между опытами по зажиганию метановоздушных смесей нагретыми проволочками и аналитическим решением. Опираясь на это расхождение, Филиппов с соавторами высказали сомнение в корректности модели. Однако указанное расхождение может быть вызвано тем, что эксперимент, использованный для сравнения с моделью, не в полной мере удовлетворяет тем ограничениям, которые вытекают из упрощающих предположений, сделанных при формулировке модели. Эти предположения и следующие из них ограничения анализируются в данной работе применительно к опытам Кумагаи по зажиганию метановоздушной смеси. Ключевые допущения стационарной модели зажигания: упрощенное описание кинетики химического тепловыделения с использованием глобальной одностадийной реакции Аррениусова типа без учета выгорания; условие, что толщина реакционной зоны должна быть существенно меньше толщины пограничного слоя; цилиндрическая симметрия теплового поля вокруг нагретого тела. Из анализа кинетики тепловыделения получено численное решение для двух нестационарных задач о зажигании газа нагретым телом и о самовоспламенении газа в проточном реакторе идеального вытеснения с детальной кинетикой реакций. Решение показало, что зависимость скорости тепловыделения от температуры, построенная для конкретных вариантов расчетов, имеет сложную форму, которую даже приближенно невозможно описать, используя закон тепловыделения в форме Аррениуса. Тем не менее оказалось, что критические числа Нуссельта, разграничивающие область зажигания и область стационарных температурных профилей, которые были рассчитаны по формулам аналитической модели при соответствующей процедуре калибровки характеристик тепловыделения, находятся в неплохом согласии с экспериментальными данными во всем диапазоне изменения диаметров и температур нагрева проволочки и скоростей газового потока. Также хорошее согласие с экспериментом и аналитической моделью по критическим условиям зажигания получено в расчетах по нестационарной модели зажигания, несмотря на заметные различия по скорости тепловыделения в зависимости от температуры. Условие малой толщины зоны реакции по отношению к размеру пограничного слоя, в целом, выполняется достаточно строго, хотя при высоких скоростях газового потока (на уровне 10 м/с) строгость условия становится недостаточной, чтобы исключить вклад конвективной составляющей в переносе тепла в зоне реакции. Из-за срыва пограничного слоя и формирования вихрей на поверхности нагретого тела вблизи азимутального угла 90◦ появляются участки с пониженной теплоотдачей, величина которой может быть заметно меньше средней величины. Именно на этих участках поверхности нагретого тела создаются условия, благоприятные для зажигания. Если провести корректировку экспериментальных данных путем соответствующего снижения критических чисел Нуссельта в указанных опытах, то это ослабит зависимость критического числа Нуссельта от диаметра проволочки, наблюдаемую в эксперименте, приближая ее к примерно пропорциональной зависимости, которая следует из аналитического решения.","PeriodicalId":12740,"journal":{"name":"Gorenie i vzryv (Moskva) - Combustion and Explosion","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gorenie i vzryv (Moskva) - Combustion and Explosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30826/ce22150301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Стационарная теория зажигания накаленной плоской поверхностью, сформулированная Я. Б. Зельдовичем в 1939 г., сыграла пионерскую роль в успешном развитии исследований по воспламенению различных горючих материалов. Аналитическое решение, полученное позднее для цилиндрической поверхности, открыло возможность для сравнения с экспериментальными данными. В работах, выполненных Филипповым с соавторами, было обнаружено расхождение между опытами по зажиганию метановоздушных смесей нагретыми проволочками и аналитическим решением. Опираясь на это расхождение, Филиппов с соавторами высказали сомнение в корректности модели. Однако указанное расхождение может быть вызвано тем, что эксперимент, использованный для сравнения с моделью, не в полной мере удовлетворяет тем ограничениям, которые вытекают из упрощающих предположений, сделанных при формулировке модели. Эти предположения и следующие из них ограничения анализируются в данной работе применительно к опытам Кумагаи по зажиганию метановоздушной смеси. Ключевые допущения стационарной модели зажигания: упрощенное описание кинетики химического тепловыделения с использованием глобальной одностадийной реакции Аррениусова типа без учета выгорания; условие, что толщина реакционной зоны должна быть существенно меньше толщины пограничного слоя; цилиндрическая симметрия теплового поля вокруг нагретого тела. Из анализа кинетики тепловыделения получено численное решение для двух нестационарных задач о зажигании газа нагретым телом и о самовоспламенении газа в проточном реакторе идеального вытеснения с детальной кинетикой реакций. Решение показало, что зависимость скорости тепловыделения от температуры, построенная для конкретных вариантов расчетов, имеет сложную форму, которую даже приближенно невозможно описать, используя закон тепловыделения в форме Аррениуса. Тем не менее оказалось, что критические числа Нуссельта, разграничивающие область зажигания и область стационарных температурных профилей, которые были рассчитаны по формулам аналитической модели при соответствующей процедуре калибровки характеристик тепловыделения, находятся в неплохом согласии с экспериментальными данными во всем диапазоне изменения диаметров и температур нагрева проволочки и скоростей газового потока. Также хорошее согласие с экспериментом и аналитической моделью по критическим условиям зажигания получено в расчетах по нестационарной модели зажигания, несмотря на заметные различия по скорости тепловыделения в зависимости от температуры. Условие малой толщины зоны реакции по отношению к размеру пограничного слоя, в целом, выполняется достаточно строго, хотя при высоких скоростях газового потока (на уровне 10 м/с) строгость условия становится недостаточной, чтобы исключить вклад конвективной составляющей в переносе тепла в зоне реакции. Из-за срыва пограничного слоя и формирования вихрей на поверхности нагретого тела вблизи азимутального угла 90◦ появляются участки с пониженной теплоотдачей, величина которой может быть заметно меньше средней величины. Именно на этих участках поверхности нагретого тела создаются условия, благоприятные для зажигания. Если провести корректировку экспериментальных данных путем соответствующего снижения критических чисел Нуссельта в указанных опытах, то это ослабит зависимость критического числа Нуссельта от диаметра проволочки, наблюдаемую в эксперименте, приближая ее к примерно пропорциональной зависимости, которая следует из аналитического решения.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受热气体稳定理论
1939年,z . b .塞尔多维奇提出的固定式平面图点火理论在研究如何点燃各种燃料材料方面发挥了先锋作用。后来对圆柱形表面的分析决定为比较实验数据提供了机会。在菲利波夫与合作者的工作中,发现了热铁丝点火甲烷气体混合物的不同之处和分析方法。基于这种差异,菲利波夫和他的合作者质疑这种模式是否正确。然而,这种差异可能是由于用于比较模型的实验未能充分满足模型提纲中提出的简化假设所产生的限制。这些假设和以下限制在kumagai的气体点火实验中被分析。固定点火模型的关键假设:使用全球单期arrenius反应简化化学热动力学描述;条件是反应区的厚度必须大大低于边界层的厚度;受热物体周围热场的圆柱形对称。热动力学分析为两个不稳定的问题提供了数值解决方案,即用热物体点火气体,在理想排气流体中自燃,反应详细。该决定表明,热辐射速度与特定计算变体所建立的温度的关系具有复杂的形式,甚至无法用arrenius形式的热辐射定律来描述。然而,努塞尔特临界数字,区分点火区域和固定温度剖面,根据分析模型公式计算,根据热特征校准,与热流的直径和温度变化范围和热流速度的实验数据相当。虽然根据温度差异显著,但在不稳定点火模式下对实验和分析模型得到了很好的同意。相对于边界层大小的反应区域的低厚度条件总体上执行得相当严格,尽管在高气流(10米/秒)的情况下,条件变得不够严格,无法排除反应区域热量转移的对流贡献。由于衰弱边界层和身体形成涡流加热表面附近辖区90◦角方位出现低散热,大小可能显著低于平均值。正是在这些区域,受热物体的表面产生了有利于点火的条件。如果对实验数据进行相应的调整,通过将努塞尔特临界数字减少到上述试验中,这将减少努塞尔特临界数字与实验中线圈直径的关系,使其更接近分析决定的比例关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
НОВЫЕ АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХДЛЯ ЭФФЕКТИВНОЙ РЕАЛИЗАЦИИ ЧИСЛЕННЫХ СХЕМ В СТАНДАРТЕ ЯЗЫКА ПРОГРАММИРОВАНИЯ C++23 РАЗВИТИЕ МЕТОДА МЕХАНОАКТИВАЦИИ ТЕРМИТНЫХ СМЕСЕЙ УСЛОВИЯ САМОЗАПИТКИ ИМПУЛЬСНО-ДЕТОНАЦИОННЫХ ПУШЕК ЭНЕРГЕТИЧЕСКИМ ГАЗОМ ПРИ ГАЗИФИКАЦИИ БУРЫХ УГЛЕЙ ПРОДУКТАМИ ДЕТОНАЦИИ ВЛИЯНИЕ ДОБАВОК СО И СО2 НА ОБРАЗОВАНИЕ СИНТЕЗ-ГАЗА ПРИ ПАРОВОЙ КОНВЕРСИИ МЕТАНА ИЗ ПРОДУКТОВ ГАЗИФИКАЦИИ БИОМАССЫ ОПРЕДЕЛЕНИЕ СКОРОСТИ ТЕРМИЧЕСКОЙ ДИССОЦИАЦИИ Н-ПРОПАНОЛА ЗА ОТРАЖЕННЫМИ УДАРНЫМИ ВОЛНАМИ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1