{"title":"Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design","authors":"Sunith Bandaru, K. Deb","doi":"10.1109/CEC.2010.5586501","DOIUrl":null,"url":null,"abstract":"Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtaining the entire Pareto front is thus not justifiable. The Pareto solutions as a whole contain within them a lot more information than that is used. Extracting this knowledge would not only give designers a better understanding of the system, but also bring worth to the resources spent. The obtained knowledge acts as governing principles which can help solve other similar systems easily. We propose a genetic algorithm based unsupervised approach for learning these principles from the Pareto-optimal dataset of the base problem. The methodology is capable of discovering analytical relationships of a certain type between different problem entities.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"35 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtaining the entire Pareto front is thus not justifiable. The Pareto solutions as a whole contain within them a lot more information than that is used. Extracting this knowledge would not only give designers a better understanding of the system, but also bring worth to the resources spent. The obtained knowledge acts as governing principles which can help solve other similar systems easily. We propose a genetic algorithm based unsupervised approach for learning these principles from the Pareto-optimal dataset of the base problem. The methodology is capable of discovering analytical relationships of a certain type between different problem entities.