Electrochemical monitoring of a photocatalytic desulfurization process of a model liquid fuel

Lina Marcela López-Lozano, César Quiñones-Segura, Oscar Rodríguez-Bejarano
{"title":"Electrochemical monitoring of a photocatalytic desulfurization process of a model liquid fuel","authors":"Lina Marcela López-Lozano, César Quiñones-Segura, Oscar Rodríguez-Bejarano","doi":"10.29047/01225383.180","DOIUrl":null,"url":null,"abstract":"Thiophene is a sulfur compound found mostly in gasoline and contributor to air pollution. This paper analyzes UV light photocatalytic desulfurization of model oil using Ag/TiO2. Thiophene concentration in the oil phase was determined by the electrochemical analyzer using Differential Pulse Voltammetry (DPV). \nThe electrochemical experimental works were performed by two methodologies. First, aliquots of the oleic mixture were taken every 30 minutes and the thiophene concentration was measured over 7 hours of degradation. The concentration of thiophene decreased by 37.94%. In the second methodology, the in situ thiophene concentration was determined by DPV, where the reaction mixture was altered by the addition of acetonitrile and a quaternary ammonium salt as solvent-supporting electrolyte system. In this medium, the thiophene concentration was reduced by 43.88% after 4 hours of photocatalytic degradation.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thiophene is a sulfur compound found mostly in gasoline and contributor to air pollution. This paper analyzes UV light photocatalytic desulfurization of model oil using Ag/TiO2. Thiophene concentration in the oil phase was determined by the electrochemical analyzer using Differential Pulse Voltammetry (DPV). The electrochemical experimental works were performed by two methodologies. First, aliquots of the oleic mixture were taken every 30 minutes and the thiophene concentration was measured over 7 hours of degradation. The concentration of thiophene decreased by 37.94%. In the second methodology, the in situ thiophene concentration was determined by DPV, where the reaction mixture was altered by the addition of acetonitrile and a quaternary ammonium salt as solvent-supporting electrolyte system. In this medium, the thiophene concentration was reduced by 43.88% after 4 hours of photocatalytic degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型液体燃料光催化脱硫过程的电化学监测
噻吩是一种硫化合物,主要存在于汽油中,是造成空气污染的原因之一。研究了Ag/TiO2在紫外光催化下对模型油的脱硫作用。采用电化学分析仪差分脉冲伏安法(DPV)测定油相中噻吩的浓度。电化学实验工作采用两种方法进行。首先,每30分钟取等量的油酸混合物,并在降解7小时内测量噻吩的浓度。噻吩的浓度下降了37.94%。在第二种方法中,通过加入乙腈和季铵盐作为溶剂-支撑电解质系统改变反应混合物,用DPV法测定原位噻吩浓度。在该介质中,光催化降解4小时后,噻吩的浓度降低了43.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical factors for unconventional hydrocarbon resources development Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins Suitability assessment for electricity generation through renewable sources: towards sustainable energy production Bulk rheology characterization of biopolymer solutions and discussions of their potential for enhanced oil recovery applications Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1