{"title":"On numerical characterizations of the topological reduction of incomplete information systems based on evidence theory","authors":"Changqing Li, Yanlan Zhang","doi":"10.1515/jisys-2022-0214","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge reduction of information systems is one of the most important parts of rough set theory in real-world applications. Based on the connections between the rough set theory and the theory of topology, a kind of topological reduction of incomplete information systems is discussed. In this study, the topological reduction of incomplete information systems is characterized by belief and plausibility functions from evidence theory. First, we present that a topological space induced by a pair of approximation operators in an incomplete information system is pseudo-discrete, which deduces a partition. Then, the topological reduction is characterized by the belief and plausibility function values of the sets in the partition. A topological reduction algorithm for computing the topological reducts in incomplete information systems is also proposed based on evidence theory, and its efficiency is examined by an example. Moreover, relationships among the concepts of topological reduct, classical reduct, belief reduct, and plausibility reduct of an incomplete information system are presented.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Knowledge reduction of information systems is one of the most important parts of rough set theory in real-world applications. Based on the connections between the rough set theory and the theory of topology, a kind of topological reduction of incomplete information systems is discussed. In this study, the topological reduction of incomplete information systems is characterized by belief and plausibility functions from evidence theory. First, we present that a topological space induced by a pair of approximation operators in an incomplete information system is pseudo-discrete, which deduces a partition. Then, the topological reduction is characterized by the belief and plausibility function values of the sets in the partition. A topological reduction algorithm for computing the topological reducts in incomplete information systems is also proposed based on evidence theory, and its efficiency is examined by an example. Moreover, relationships among the concepts of topological reduct, classical reduct, belief reduct, and plausibility reduct of an incomplete information system are presented.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.