{"title":"Convolutional and Fully Connected Layer in DFN","authors":"Mian Mian Lau, K. Lim","doi":"10.6688/JISE.202009_36(5).0009","DOIUrl":null,"url":null,"abstract":"Deep feedforward network (DFN) is the general structure of many well-known deep neural networks (DNN) for image classification. The recent research emphasizes on going deeper and wider network architecture to achieve higher accuracy and lower misclassification rate. This paper provides a study and investigation on stacking three basic operation of neural layers, i.e. convolutional layer, pooling layer and fully connected layer. As a result, a new framework of convolutional deep feedforward network (C-DFN) is proposed in this paper. C-DFN performed significantly better than deep feedforward network (DFN), deep belief network (DBN), and convolutional deep belief network (C-DBN) in MNIST dataset, INRIA pedestrian dataset and Daimler pedestrian dataset. The convolutional layer acts as a trainable feature extractor improving the network performance significantly. Moreover, it reduced 14% of the trainable parameters in DFN. With the use of trainable activation function such as PReLU in the C-DFN, it achieves an average misclassification rate of 9.22% of the three benchmark datasets.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202009_36(5).0009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Deep feedforward network (DFN) is the general structure of many well-known deep neural networks (DNN) for image classification. The recent research emphasizes on going deeper and wider network architecture to achieve higher accuracy and lower misclassification rate. This paper provides a study and investigation on stacking three basic operation of neural layers, i.e. convolutional layer, pooling layer and fully connected layer. As a result, a new framework of convolutional deep feedforward network (C-DFN) is proposed in this paper. C-DFN performed significantly better than deep feedforward network (DFN), deep belief network (DBN), and convolutional deep belief network (C-DBN) in MNIST dataset, INRIA pedestrian dataset and Daimler pedestrian dataset. The convolutional layer acts as a trainable feature extractor improving the network performance significantly. Moreover, it reduced 14% of the trainable parameters in DFN. With the use of trainable activation function such as PReLU in the C-DFN, it achieves an average misclassification rate of 9.22% of the three benchmark datasets.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.