Adversarial Reconstruction CNN for Illumination-Robust Frontal Face Image Recovery and Recognition

Pub Date : 2021-04-01 DOI:10.4018/ijcini.20210401.oa2
Liping Yang, Bin Yang, Xiaohua Gu
{"title":"Adversarial Reconstruction CNN for Illumination-Robust Frontal Face Image Recovery and Recognition","authors":"Liping Yang, Bin Yang, Xiaohua Gu","doi":"10.4018/ijcini.20210401.oa2","DOIUrl":null,"url":null,"abstract":"This article proposes an adversarial reconstruction convolution neural network (ARCNN) for non-uniform illumination frontal face image recovery and recognition. The proposed ARCNN includes a reconstruction network and a discriminative network. The authors employ GAN framework to learn the reconstruction network in an adversarial manner. This article integrates gradient loss and perceptual loss terms, which are able to preserve the detailed and spatial structure image information, into the overall reconstruction loss function to constraint the reconstruction procedure. Experiments are conducted on the typical illumination-sensitive dataset, extended YaleB dataset. The reconstructed results demonstrate that the proposed ARCNN approach can remove the illumination and shadow information and recover natural uniform illuminated face image from non-uniform illuminated ones. Face recognition results on the extended YaleB dataset demonstrate that the proposed ARCNN reconstruction procedure can also preserve the discriminative information of face image for classification task.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This article proposes an adversarial reconstruction convolution neural network (ARCNN) for non-uniform illumination frontal face image recovery and recognition. The proposed ARCNN includes a reconstruction network and a discriminative network. The authors employ GAN framework to learn the reconstruction network in an adversarial manner. This article integrates gradient loss and perceptual loss terms, which are able to preserve the detailed and spatial structure image information, into the overall reconstruction loss function to constraint the reconstruction procedure. Experiments are conducted on the typical illumination-sensitive dataset, extended YaleB dataset. The reconstructed results demonstrate that the proposed ARCNN approach can remove the illumination and shadow information and recover natural uniform illuminated face image from non-uniform illuminated ones. Face recognition results on the extended YaleB dataset demonstrate that the proposed ARCNN reconstruction procedure can also preserve the discriminative information of face image for classification task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
用于光照鲁棒正面人脸图像恢复和识别的对抗重建CNN
提出了一种对抗重建卷积神经网络(ARCNN),用于非均匀光照下正面人脸图像的恢复与识别。提出的ARCNN包括一个重构网络和一个判别网络。作者采用GAN框架以对抗的方式学习重建网络。本文将能够保留图像细节和空间结构信息的梯度损失和感知损失项整合到整体重建损失函数中,约束重建过程。在典型的光敏感数据集——扩展的YaleB数据集上进行了实验。重建结果表明,该方法能够去除光照和阴影信息,从非均匀光照中恢复出自然均匀光照的人脸图像。在扩展的YaleB数据集上的人脸识别结果表明,所提出的ARCNN重构方法还能保留人脸图像的判别信息,用于分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1