Active and Reactive Power Load Profiling Using Dimensionality Reduction Techniques and Clustering

E. F. Yetkin, O. Ceylan, T. Papadopoulos, Anastasia G. Kazaki, Georgios A. Barzegkar-Ntovom
{"title":"Active and Reactive Power Load Profiling Using Dimensionality Reduction Techniques and Clustering","authors":"E. F. Yetkin, O. Ceylan, T. Papadopoulos, Anastasia G. Kazaki, Georgios A. Barzegkar-Ntovom","doi":"10.1109/UPEC.2019.8893443","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology to characterize active and reactive power load profiles. Specifically, the approach makes use of fast Fourier Transform for conversion into frequency domain, principle component analysis to reduce the dimension and K-means++ to determine the representative load profiles. The data set consists of five-year measurements taken from the Democritus University of Thrace Campus. Test days were also classified as working and non-working. From the results it is observed that the proposed methodology determines representative load profiles effectively both regarding active and reactive power.","PeriodicalId":6670,"journal":{"name":"2019 54th International Universities Power Engineering Conference (UPEC)","volume":"25 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 54th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2019.8893443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a methodology to characterize active and reactive power load profiles. Specifically, the approach makes use of fast Fourier Transform for conversion into frequency domain, principle component analysis to reduce the dimension and K-means++ to determine the representative load profiles. The data set consists of five-year measurements taken from the Democritus University of Thrace Campus. Test days were also classified as working and non-working. From the results it is observed that the proposed methodology determines representative load profiles effectively both regarding active and reactive power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于降维技术和聚类的有功和无功负荷分析
本文提出了一种表征有功和无功负荷分布的方法。具体而言,该方法利用快速傅里叶变换转换到频域,主成分分析降维,k - meme++确定代表性负载分布。该数据集由德谟克利特色雷斯大学校园的五年测量数据组成。测试日也分为工作日和非工作日。从结果中可以观察到,所提出的方法可以有效地确定有关有功和无功功率的代表性负载分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universities as a source of grid flexibility: A case study Power Hardware In the Loop and Ancillary Service for Voltage Regulation in Low Voltage Grid Design and Implementation of Hybrid Vehicle using Control of DC Electric Motor Reduction of Short Circuit Current using DC Transmission and Split-Winding Power Transformer Enhanced visualisation of fast frequency phenomena as exhibited in the GB transmission system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1