Domain-Specific Event Abstraction

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Business & Information Systems Engineering Pub Date : 2021-01-01 DOI:10.52825/bis.v1i.39
Finn Klessascheck, Tom Lichtenstein, Martin Meier, Simon Remy, Jan-Philipp Sachs, Luise Pufahl, Riccardo Miotto, E. Böttinger, M. Weske
{"title":"Domain-Specific Event Abstraction","authors":"Finn Klessascheck, Tom Lichtenstein, Martin Meier, Simon Remy, Jan-Philipp Sachs, Luise Pufahl, Riccardo Miotto, E. Böttinger, M. Weske","doi":"10.52825/bis.v1i.39","DOIUrl":null,"url":null,"abstract":"Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains.This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"22 1","pages":"117-126"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.39","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains.This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特定于领域的事件抽象
流程挖掘旨在从事件日志中获取流程知识,事件日志包含流程执行期间记录的数据。通常,需要从存储在不同类型的信息系统中的流程执行数据生成事件日志。在医疗保健等复杂领域中,数据只能在不同粒度级别上可用。事件抽象技术允许将事件转换为公共粒度级别,从而支持有效的流程挖掘。现有的事件抽象技术没有充分考虑到领域知识,因此无法在复杂的应用程序领域中交付合适的事件日志。提出了一种基于领域本体的事件抽象方法。结果表明,所引入的方法生成了语义上有意义的高级事件,适合于过程挖掘;它是根据美国大型卫生系统的实际患者治疗数据进行评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
期刊最新文献
The Design of Citizen-Centric Green IS in Sustainable Smart Districts A Maturity Model for Assessing the Digitalization of Public Health Agencies IT Professionals in the Gig Economy A Reference System Architecture with Data Sovereignty for Human-Centric Data Ecosystems Analyzing Medical Data with Process Mining: a COVID-19 Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1