Active stabilization of a humanoid robot for impact motions with unknown reaction forces

Seung-Joon Yi, Byoung-Tak Zhang, D. Hong, Daniel D. Lee
{"title":"Active stabilization of a humanoid robot for impact motions with unknown reaction forces","authors":"Seung-Joon Yi, Byoung-Tak Zhang, D. Hong, Daniel D. Lee","doi":"10.1109/IROS.2012.6385854","DOIUrl":null,"url":null,"abstract":"During heavy work, humans utilize whole body motions in order to generate large forces. In extreme cases, exaggerated weight shifts are used to impart large impact forces. There have been approaches to design stable whole body impact motions based on precise dynamic models of the robot and the target object, but they have practical limitations as the uncertainty in the ensuing reaction forces can lead to instability. In the current work, we describe a motion controller for a humanoid robot that generates impacts at an end effector while keeping the robot body balanced before and after the impact. Instead of relying on the accuracy of the impact dynamics model, we use a simplified model of the robot and biomechanically motivated push recovery controllers to reactively stabilize the robot against unknown perturbations from the impact. We demonstrate our approach in physically realistic simulations, as well as experimentally on a small humanoid robot platform.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"58 1","pages":"4034-4039"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

During heavy work, humans utilize whole body motions in order to generate large forces. In extreme cases, exaggerated weight shifts are used to impart large impact forces. There have been approaches to design stable whole body impact motions based on precise dynamic models of the robot and the target object, but they have practical limitations as the uncertainty in the ensuing reaction forces can lead to instability. In the current work, we describe a motion controller for a humanoid robot that generates impacts at an end effector while keeping the robot body balanced before and after the impact. Instead of relying on the accuracy of the impact dynamics model, we use a simplified model of the robot and biomechanically motivated push recovery controllers to reactively stabilize the robot against unknown perturbations from the impact. We demonstrate our approach in physically realistic simulations, as well as experimentally on a small humanoid robot platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有未知反作用力的仿人机器人冲击运动的主动稳定
在繁重的工作中,人类利用全身运动来产生巨大的力量。在极端情况下,夸张的重量变化被用来产生巨大的冲击力。基于精确的机器人和目标物体的动力学模型,已经有了设计稳定的全身冲击运动的方法,但它们具有实际的局限性,因为随之而来的反作用力的不确定性可能导致不稳定。在当前的工作中,我们描述了一个人形机器人的运动控制器,它在末端执行器上产生冲击,同时保持机器人身体在冲击前后的平衡。我们不再依赖于冲击动力学模型的准确性,而是使用机器人的简化模型和生物力学驱动的推力恢复控制器来反应性地稳定机器人,以应对来自冲击的未知扰动。我们在物理逼真的模拟中演示了我们的方法,并在小型人形机器人平台上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YES - YEt another object segmentation: Exploiting camera movement Scan registration with multi-scale k-means normal distributions transform Visual servoing using the sum of conditional variance Parallel sampling-based motion planning with superlinear speedup Tactile sensor based varying contact point manipulation strategy for dexterous robot hand manipulating unknown objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1