K. Grochot, Łukasz Karwacki, S. Łazarski, Witold Skowro'nski, J. Kanak, Wieslaw Powro'znik, P. Kuświk, M. Kowacz, F. Stobiecki, T. Stobiecki
{"title":"Current-Induced Magnetization Switching of Exchange-Biased \nNiO\n Heterostructures Characterized by Spin-Orbit Torque","authors":"K. Grochot, Łukasz Karwacki, S. Łazarski, Witold Skowro'nski, J. Kanak, Wieslaw Powro'znik, P. Kuświk, M. Kowacz, F. Stobiecki, T. Stobiecki","doi":"10.1103/PHYSREVAPPLIED.15.014017","DOIUrl":null,"url":null,"abstract":"In this work, we study magnetization switching induced by spin-orbit torque in heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current-driven switching, magnetoresistance and anomalous Hall effect measurements, perpendicular and in-plane exchange bias field were determined. Several Hall-bar devices possessing in-plane exchange bias from both systems were selected and analyzed in relation to our analytical switching model of critical current density as a function of Pt and W thickness, resulting in estimation of effective spin Hall angle and effective perpendicular magnetic anisotropy. Approximately one order of magnitude smaller critical switching current densities in W- than Pt-based Hall-bar devices were found due to a higher effective spin Hall angle in W structures. The current switching stability and training process are discussed in detail.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.014017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, we study magnetization switching induced by spin-orbit torque in heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current-driven switching, magnetoresistance and anomalous Hall effect measurements, perpendicular and in-plane exchange bias field were determined. Several Hall-bar devices possessing in-plane exchange bias from both systems were selected and analyzed in relation to our analytical switching model of critical current density as a function of Pt and W thickness, resulting in estimation of effective spin Hall angle and effective perpendicular magnetic anisotropy. Approximately one order of magnitude smaller critical switching current densities in W- than Pt-based Hall-bar devices were found due to a higher effective spin Hall angle in W structures. The current switching stability and training process are discussed in detail.