J. C. Kirchhof, A. Kleiss, Bernhard Rumpe, David Schmalzing, Philipp Schneider, A. Wortmann
{"title":"Model-driven Self-adaptive Deployment of Internet of Things Applications with Automated Modification Proposals","authors":"J. C. Kirchhof, A. Kleiss, Bernhard Rumpe, David Schmalzing, Philipp Schneider, A. Wortmann","doi":"10.1145/3549553","DOIUrl":null,"url":null,"abstract":"Today’s Internet of Things (IoT) applications are mostly developed as a bundle of hardware and associated software. Future cross-manufacturer app stores for IoT applications will require that the strong coupling of hardware and software is loosened. In the resulting IoT applications, a quintessential challenge is the effective and efficient deployment of IoT software components across variable networks of heterogeneous devices. Current research focuses on computing whether deployment requirements fit the intended target devices instead of assisting users in successfully deploying IoT applications by suggesting deployment requirement relaxations or hardware alternatives. This can make successfully deploying large-scale IoT applications a costly trial-and-error endeavor. To mitigate this, we have devised a method for providing such deployment suggestions based on search and backtracking. This can make deploying IoT applications more effective and more efficient, which, ultimately, eases reducing the complexity of deploying the software surrounding us.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"80 1","pages":"1 - 30"},"PeriodicalIF":3.5000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Today’s Internet of Things (IoT) applications are mostly developed as a bundle of hardware and associated software. Future cross-manufacturer app stores for IoT applications will require that the strong coupling of hardware and software is loosened. In the resulting IoT applications, a quintessential challenge is the effective and efficient deployment of IoT software components across variable networks of heterogeneous devices. Current research focuses on computing whether deployment requirements fit the intended target devices instead of assisting users in successfully deploying IoT applications by suggesting deployment requirement relaxations or hardware alternatives. This can make successfully deploying large-scale IoT applications a costly trial-and-error endeavor. To mitigate this, we have devised a method for providing such deployment suggestions based on search and backtracking. This can make deploying IoT applications more effective and more efficient, which, ultimately, eases reducing the complexity of deploying the software surrounding us.