Pension Systems Similarity Assessment: An Application of Kendall's W to Statistical Multivariate Analysis

Q3 Social Sciences Social Security Bulletin Pub Date : 2017-09-30 DOI:10.5709/CE.1897-9254.244
Edyta Marcinkiewicz
{"title":"Pension Systems Similarity Assessment: An Application of Kendall's W to Statistical Multivariate Analysis","authors":"Edyta Marcinkiewicz","doi":"10.5709/CE.1897-9254.244","DOIUrl":null,"url":null,"abstract":"The study aims at empirical verification of the quality of pension system clustering based on two dimensions: the extent of involvement of the state in the pension system and the level of voluntariness. To answer the question of whether these two dimensions actually determine the division into homogeneous groups that constitute pension regimes, Kendall’s W concordance coefficient is employed. It is typically used in Delphi studies as an indicator of expert consensus, but it has been shown that the concept of concordance can also be applied to statistical multivariate analysis to measure intra-group similarity. This empirical research comprises 30 OECD countries grouped into three pension regimes. It employs the classical chi-square test as well as the permutation test of the coefficient of concordance previously applied to empirical problems in biology. Additionally, this study proposes a new permutation procedure that allows for verifying the quality of clustering from a different perspective.","PeriodicalId":39542,"journal":{"name":"Social Security Bulletin","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Security Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5709/CE.1897-9254.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

The study aims at empirical verification of the quality of pension system clustering based on two dimensions: the extent of involvement of the state in the pension system and the level of voluntariness. To answer the question of whether these two dimensions actually determine the division into homogeneous groups that constitute pension regimes, Kendall’s W concordance coefficient is employed. It is typically used in Delphi studies as an indicator of expert consensus, but it has been shown that the concept of concordance can also be applied to statistical multivariate analysis to measure intra-group similarity. This empirical research comprises 30 OECD countries grouped into three pension regimes. It employs the classical chi-square test as well as the permutation test of the coefficient of concordance previously applied to empirical problems in biology. Additionally, this study proposes a new permutation procedure that allows for verifying the quality of clustering from a different perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
养老金制度相似性评估:肯德尔W在统计多元分析中的应用
本研究旨在从国家对养老金制度的参与程度和自愿程度两个维度对养老金制度聚类质量进行实证验证。为了回答这两个维度是否真的决定了构成养老金制度的同质群体的划分,我们采用了肯德尔的W一致性系数。它通常在德尔菲研究中用作专家共识的指标,但已经表明,一致性的概念也可以应用于统计多变量分析,以测量组内相似性。这项实证研究包括30个经合组织国家,分为三种养老金制度。它采用了经典的卡方检验以及先前应用于生物学经验问题的一致性系数的排列检验。此外,本研究提出了一种新的排列程序,允许从不同的角度验证聚类的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Social Security Bulletin
Social Security Bulletin Social Sciences-Social Sciences (miscellaneous)
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Introduction: Present Principles Industrial Life Assurance Widows', Orphans' and Old Age Pensions Finance of the Social Services National Health Insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1