Yuchen Wen, J. Hou, Ming Qu, Wei-Peng Wu, Tuo Liang, Wei Zhang, Wenming Wu
{"title":"Field Pilot Test of Micro-Dispersed Gel Foam in Fractured-Vuggy Carbonate Reservoirs","authors":"Yuchen Wen, J. Hou, Ming Qu, Wei-Peng Wu, Tuo Liang, Wei Zhang, Wenming Wu","doi":"10.2118/206073-ms","DOIUrl":null,"url":null,"abstract":"\n This paper summarizes the change rule of production performance and the EOR efficiency from the micro-dispersed gel foam injection in the fractured-vuggy carbonate reservoir of Tahe Oilfield. The TK722CH2 well group injected gas from August 2014 to September 2018. During the gas injection stage, the effect of periodic gas injection decreased obviously, the effective direction of gas injection was single and the risk of gas channeling increased greatly. The field pilot test f micro-dispersed gel foam was carried out on September 20, 2018. The fluid is injected into well group in three slugs: micro-dispersed gel foam, normal foam and nitrogen gas. As a part of the foam pilot test monitoring, a gas tracer study was performed before and after the injection of gel foam in the reservoir. After the pilot test was carried out in the TK722CH2 well group, the subsequent injection gas swept new fractures and vugs, and a new dynamic connectivity has been established. The connectivity of well group changed from 1 injection well connects with 1 production well to 1 injection well connects with 4 production wells. Through the field pilot test of micro-dispersed gel foam, this paper verifies the effect of improve gas flooding and increase sweep volume of micro-dispersed gel foam. By analyzing the results of the field pilot test, the relevant technical mechanism of micro-dispersed gel foam in fractured-vuggy reservoir is revealed. As a result, the field pilot test in this paper provides theoretical basis and technical support for the efficient development of fractured-vuggy carbonate reservoir.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206073-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper summarizes the change rule of production performance and the EOR efficiency from the micro-dispersed gel foam injection in the fractured-vuggy carbonate reservoir of Tahe Oilfield. The TK722CH2 well group injected gas from August 2014 to September 2018. During the gas injection stage, the effect of periodic gas injection decreased obviously, the effective direction of gas injection was single and the risk of gas channeling increased greatly. The field pilot test f micro-dispersed gel foam was carried out on September 20, 2018. The fluid is injected into well group in three slugs: micro-dispersed gel foam, normal foam and nitrogen gas. As a part of the foam pilot test monitoring, a gas tracer study was performed before and after the injection of gel foam in the reservoir. After the pilot test was carried out in the TK722CH2 well group, the subsequent injection gas swept new fractures and vugs, and a new dynamic connectivity has been established. The connectivity of well group changed from 1 injection well connects with 1 production well to 1 injection well connects with 4 production wells. Through the field pilot test of micro-dispersed gel foam, this paper verifies the effect of improve gas flooding and increase sweep volume of micro-dispersed gel foam. By analyzing the results of the field pilot test, the relevant technical mechanism of micro-dispersed gel foam in fractured-vuggy reservoir is revealed. As a result, the field pilot test in this paper provides theoretical basis and technical support for the efficient development of fractured-vuggy carbonate reservoir.